232 research outputs found
esyN: network building, sharing and publishing.
The construction and analysis of networks is increasingly widespread in biological research. We have developed esyN ("easy networks") as a free and open source tool to facilitate the exchange of biological network models between researchers. esyN acts as a searchable database of user-created networks from any field. We have developed a simple companion web tool that enables users to view and edit networks using data from publicly available databases. Both normal interaction networks (graphs) and Petri nets can be created. In addition to its basic tools, esyN contains a number of logical templates that can be used to create models more easily. The ability to use previously published models as building blocks makes esyN a powerful tool for the construction of models and network graphs. Users are able to save their own projects online and share them either publicly or with a list of collaborators. The latter can be given the ability to edit the network themselves, allowing online collaboration on network construction. esyN is designed to facilitate unrestricted exchange of this increasingly important type of biological information. Ultimately, the aim of esyN is to bring the advantages of Open Source software development to the construction of biological networks.This is the final published version of the paper. It's also available from PLOS at http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0106035
Urinary Exosomes Contain MicroRNAs Capable of Paracrine Modulation of Tubular Transporters in Kidney
Exosomes derived from all nephron segments are present in human urine, where their functionality is incompletely understood. Most studies have focused on biomarker discovery rather than exosome function. Through sequencing we identified the miRNA repertoire of urinary exosomes from healthy volunteers; 276 mature miRNAs and 345 pre-miRNAs were identified (43%/7% of reads). Among the most abundant were members of the miR-10, miR-30 and let-7 families. Targets for the identified miRNAs were predicted using five different databases; genes encoding membrane transporters and their regulators were enriched, highlighting the possibility that these miRNAs could modulate key renal tubular functions in a paracrine manner. As proof of concept, cultured renal epithelial cells were exposed to urinary exosomes and cellular exosomal uptake was confirmed; thereafter, reduced levels of the potassium channel ROMK and kinases SGK1 and WNK1 were observed in a human collecting duct cell line, while SPAK was unaltered. In proximal tubular cells, mRNA levels of the amino acid transporter gene SLC38A2 were diminished and reflected in a significant decrement of its encoded protein SNAT2. Protein levels of the kinase SGK1 did not change. Thus we demonstrated a novel potential function for miRNA in urinary exosomes.This work was supported by the Wellcome Trust (grant 088489/Z/09/Z to FEKF and Strategic award 100140/Z/12/Z to the Cambridge Institute for Medical Research). The sequencing facility is supported by the Cambridge Biomedical Research Centre
Biochemical Diversification through Foreign Gene Expression in Bdelloid Rotifers
Bdelloid rotifers are microinvertebrates with unique characteristics: they have survived tens of millions of years without sexual reproduction; they withstand extreme desiccation by undergoing anhydrobiosis; and they tolerate very high levels of ionizing radiation. Recent evidence suggests that subtelomeric regions of the bdelloid genome contain sequences originating from other organisms by horizontal gene transfer (HGT), of which some are known to be transcribed. However, the extent to which foreign gene expression plays a role in bdelloid physiology is unknown. We address this in the first large scale analysis of the transcriptome of the bdelloid Adineta ricciae: cDNA libraries from hydrated and desiccated bdelloids were subjected to massively parallel sequencing and assembled transcripts compared against the UniProtKB database by blastx to identify their putative products. Of βΌ29,000 matched transcripts, βΌ10% were inferred from blastx matches to be horizontally acquired, mainly from eubacteria but also from fungi, protists, and algae. After allowing for possible sources of error, the rate of HGT is at least 8%β9%, a level significantly higher than other invertebrates. We verified their foreign nature by phylogenetic analysis and by demonstrating linkage of foreign genes with metazoan genes in the bdelloid genome. Approximately 80% of horizontally acquired genes expressed in bdelloids code for enzymes, and these represent 39% of enzymes in identified pathways. Many enzymes encoded by foreign genes enhance biochemistry in bdelloids compared to other metazoans, for example, by potentiating toxin degradation or generation of antioxidants and key metabolites. They also supplement, and occasionally potentially replace, existing metazoan functions. Bdelloid rotifers therefore express horizontally acquired genes on a scale unprecedented in animals, and foreign genes make a profound contribution to their metabolism. This represents a potential mechanism for ancient asexuals to adapt rapidly to changing environments and thereby persist over long evolutionary time periods in the absence of sex
Multiple functionally divergent and conserved copies of alpha tubulin in bdelloid rotifers.
BACKGROUND: Bdelloid rotifers are microscopic animals that have apparently survived without sex for millions of years and are able to survive desiccation at all life stages through a process called anhydrobiosis. Both of these characteristics are believed to have played a role in shaping several unusual features of bdelloid genomes discovered in recent years. Studies into the impact of asexuality and anhydrobiosis on bdelloid genomes have focused on understanding gene copy number. Here we investigate copy number and sequence divergence in alpha tubulin. Alpha tubulin is conserved and normally present in low copy numbers in animals, but multiplication of alpha tubulin copies has occurred in animals adapted to extreme environments, such as cold-adapted Antarctic fish. Using cloning and sequencing we compared alpha tubulin copy variation in four species of bdelloid rotifers and four species of monogonont rotifers, which are facultatively sexual and cannot survive desiccation as adults. Results were verified using transcriptome data from one bdelloid species, Adineta ricciae. RESULTS: In common with the typical pattern for animals, monogonont rotifers contain either one or two copies of alpha tubulin, but bdelloid species contain between 11 and 13 different copies, distributed across five classes. Approximately half of the copies form a highly conserved group that vary by only 1.1% amino acid pairwise divergence with each other and with the monogonont copies. The other copies have divergent amino acid sequences that evolved significantly faster between classes than within them, relative to synonymous changes, and vary in predicted biochemical properties. Copies of each class were expressed under the laboratory conditions used to construct the transcriptome. CONCLUSIONS: Our findings are consistent with recent evidence that bdelloids are degenerate tetraploids and that functional divergence of ancestral copies of genes has occurred, but show how further duplication events in the ancestor of bdelloids led to proliferation in both conserved and functionally divergent copies of this gene.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Comparative genomics of bdelloid rotifers: Insights from desiccating and nondesiccating species.
Bdelloid rotifers are a class of microscopic invertebrates that have existed for millions of years apparently without sex or meiosis. They inhabit a variety of temporary and permanent freshwater habitats globally, and many species are remarkably tolerant of desiccation. Bdelloids offer an opportunity to better understand the evolution of sex and recombination, but previous work has emphasised desiccation as the cause of several unusual genomic features in this group. Here, we present high-quality whole-genome sequences of 3 bdelloid species: Rotaria macrura and R. magnacalcarata, which are both desiccation intolerant, and Adineta ricciae, which is desiccation tolerant. In combination with the published assembly of A. vaga, which is also desiccation tolerant, we apply a comparative genomics approach to evaluate the potential effects of desiccation tolerance and asexuality on genome evolution in bdelloids. We find that ancestral tetraploidy is conserved among all 4 bdelloid species, but homologous divergence in obligately aquatic Rotaria genomes is unexpectedly low. This finding is contrary to current models regarding the role of desiccation in shaping bdelloid genomes. In addition, we find that homologous regions in A. ricciae are largely collinear and do not form palindromic repeats as observed in the published A. vaga assembly. Consequently, several features interpreted as genomic evidence for long-term ameiotic evolution are not general to all bdelloid species, even within the same genus. Finally, we substantiate previous findings of high levels of horizontally transferred nonmetazoan genes in both desiccating and nondesiccating bdelloid species and show that this unusual feature is not shared by other animal phyla, even those with desiccation-tolerant representatives. These comparisons call into question the proposed role of desiccation in mediating horizontal genetic transfer
Recommended from our members
New tools for self-organized pattern formation
RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Recommended from our members
Insights into electrosensory organ development, physiology and evolution from a lateral line-enriched transcriptome
The anamniote lateral line system, comprising mechanosensory neuromasts and electrosensory ampullary organs, is a useful model for investigating the developmental and evolutionary diversification of different organs and cell types. Zebrafish neuromast development is increasingly well understood, but neither zebrafish nor is electroreceptive and our molecular understanding of ampullary organ development is rudimentary. We have used RNA-seq to generate a lateral line-enriched gene-set from late-larval paddlefish (). Validation of a subset reveals expression in developing ampullary organs of transcription factor genes critical for hair cell development, and genes essential for glutamate release at hair cell ribbon synapses, suggesting close developmental, physiological and evolutionary links between non-teleost electroreceptors and hair cells. We identify an ampullary organ-specific proneural transcription factor, and candidates for the voltage-sensing L-type Ca channel and rectifying K channel predicted from skate (cartilaginous fish) ampullary organ electrophysiology. Overall, our results illuminate ampullary organ development, physiology and evolution.Biotechnology and Biological Sciences Research Council (BB/F00818X/1), Leverhulme Trust (RPG-383), Fisheries Society of the British Isles (Research Grant), National Science Foundation (IOS 1557857, IOS 1144965
Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle.
Despite half a century of research, the biology of dinoflagellates remains enigmatic: they defy many functional and genetic traits attributed to typical eukaryotic cells. Genomic approaches to study dinoflagellates are often stymied due to their large, multi-gigabase genomes. Members of the genus Symbiodinium are photosynthetic endosymbionts of stony corals that provide the foundation of coral reef ecosystems. Their smaller genome sizes provide an opportunity to interrogate evolution and functionality of dinoflagellate genomes and endosymbiosis. We sequenced the genome of the ancestral Symbiodinium microadriaticum and compared it to the genomes of the more derived Symbiodinium minutum and Symbiodinium kawagutii and eukaryote model systems as well as transcriptomes from other dinoflagellates. Comparative analyses of genome and transcriptome protein sets show that all dinoflagellates, not only Symbiodinium, possess significantly more transmembrane transporters involved in the exchange of amino acids, lipids, and glycerol than other eukaryotes. Importantly, we find that only Symbiodinium harbor an extensive transporter repertoire associated with the provisioning of carbon and nitrogen. Analyses of these transporters show species-specific expansions, which provides a genomic basis to explain differential compatibilities to an array of hosts and environments, and highlights the putative importance of gene duplications as an evolutionary mechanism in dinoflagellates and Symbiodinium
Is nonangiogenesis a novel pathway for cancer progression? A study using 3-dimensional tumour reconstructions
The nonangiogenic lung tumour is characterized by neoplastic cells co-opting the pre-existent vasculature and filling the alveoli space. 3-Dimensional reconstruction of the tumour reveals that this particular tumour progresses without neovascularization and there is no major destruction of the lung's architectural integrity
- β¦