9,839 research outputs found

    Atomic environments in iron meteorites using EXAFS

    Get PDF
    Extended x ray absorption fine structure (EXAFS) is observed as a modulation on the high energy side of an x ray absorption edge. It occurs when the photo-ejected electron wave is scattered by neighboring atoms in a solid, and interference occurs between the outgoing and scattered waves. The result is that the absorption spectrum carries a signature that is characteristic of the identity and disposition of scattering atoms around the absorbing atom. Therefore, it may be shown that the Fourier transform of the normalized EXAFS can provide detailed information about the immediate environment of specific atoms in a solid and is ideally suited to the study of cosmic dusts. A study of cosmic dust was initiated using EXAFS and other techniques. The simplest type of cosmic material, namely iron meteorites, was investigated

    Proteome-wide observation of the phenomenon of life on the edge of solubility

    Get PDF
    To function effectively proteins must avoid aberrant aggregation, and hence they are expected to be expressed at concentrations safely below their solubility limits. By analyzing proteome-wide mass spectrometry data of Caenorhabditis elegans, however, we show that the levels of about three-quarters of the nearly 4, 000 proteins analyzed in adult animals are close to their intrinsic solubility limits, indeed exceeding them by about 10% on average. We next asked how aging and functional self-assembly influence these solubility limits. We found that despite the fact that the total quantity of proteins within the cellular environment remains approximately constant during aging, protein aggregation sharply increases between days 6 and 12 of adulthood, after the worms have reproduced, as individual proteins lose their stoichiometric balances and the cellular machinery that maintains solubility undergoes functional decline. These findings reveal that these proteins are highly prone to undergoing concentration-dependent phase separation, which on aging is rationalized in a decrease of their effective solubilities, in particular for proteins associated with translation, growth, reproduction, and the chaperone system

    Time-dependent density functional theory beyond the adiabatic local density approximation

    Get PDF
    In the current density functional theory of linear and nonlinear time-dependent phenomena, the treatment of exchange and correlation beyond the level of the adiabatic local density approximation is shown to lead to the appearance of viscoelastic stresses in the electron fluid. Complex and frequency-dependent viscosity/elasticity coefficients are microscopically derived and expressed in terms of properties of the homogeneous electron gas. As a first consequence of this formalism, we provide an explicit formula for the linewidths of collective excitations in electronic systems.Comment: RevTeX, 4 page

    Disulfide bonds reduce the toxicity of the amyloid fibrils formed by an extracellular protein

    Get PDF
    In a stable condition: Disulfide bonds stabilize folded proteins primarily by decreasing the entropic cost of folding. Such cross-links also reduce toxic aggregation by favoring the formation of highly structured amyloid fibrils (see picture). It is suggested that disulfide bonds in extracellular proteins were selected by evolutionary pressures because they decrease the propensity to form toxic aggregates. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Distributed Generation and Resilience in Power Grids

    Full text link
    We study the effects of the allocation of distributed generation on the resilience of power grids. We find that an unconstrained allocation and growth of the distributed generation can drive a power grid beyond its design parameters. In order to overcome such a problem, we propose a topological algorithm derived from the field of Complex Networks to allocate distributed generation sources in an existing power grid.Comment: proceedings of Critis 2012 http://critis12.hig.no

    Many-body GW calculations of ground-state properties: Quasi-2D electron systems and van der Waals forces

    Get PDF
    We present GW many-body results for ground-state properties of two simple but very distinct families of inhomogeneous systems in which traditional implementations of density-functional theory (DFT) fail drastically. The GW approach gives notably better results than the well-known random-phase approximation, at a similar computational cost. These results establish GW as a superior alternative to standard DFT schemes without the expensive numerical effort required by quantum Monte Carlo simulations

    Revenue divergence and competitive balance in a divisional sports league

    Get PDF
    The North American model of resource allocation in professional sports leagues is adapted for English (association) football. The theoretical relationship between revenue and competitive balance is shown to be robust with respect to changes in teams’ objectives and labour market conditions. Empirical revenue functions are reported for 1926-1999. These indicate a shift in the composition of demand favouring big-city teams and an increase in the sensitivity of revenue to performance. An analysis of match results in the FA Cup competition suggests an increase in competitive imbalance between teams at different levels of the league’s divisional hierarchy, as the theory suggests

    Dynamic exchange-correlation potentials for the electron gas in dimensionality D=3 and D=2

    Full text link
    Recent progress in the formulation of a fully dynamical local approximation to time-dependent Density Functional Theory appeals to the longitudinal and transverse components of the exchange and correlation kernel in the linear current-density response of the homogeneous fluid at long wavelength. Both components are evaluated for the electron gas in dimensionality D=3 and D=2 by an approximate decoupling in the equation of motion for the current density, which accounts for processes of excitation of two electron-hole pairs. Each pair is treated in the random phase approximation, but the role of exchange and correlation is also examined; in addition, final-state exchange processes are included phenomenologically so as to satisfy the exactly known high-frequency behaviours of the kernel. The transverse and longitudinal spectra involve the same decay channels and are similar in shape. A two-plasmon threshold in the spectrum for two-pair excitations in D=3 leads to a sharp minimum in the real part of the exchange and correlation kernel at twice the plasma frequency. In D=2 the same mechanism leads to a broad spectral peak and to a broad minimum in the real part of the kernel, as a consequence of the dispersion law of the plasmon vanishing at long wavelength. The numerical results have been fitted to simple analytic functions.Comment: 13 pages, 11 figures included. Accepted for publication in Phys. Rev.

    Center of mass and relative motion in time dependent density functional theory

    Full text link
    It is shown that the exchange-correlation part of the action functional Axc[ρ(r,t)]A_{xc}[\rho (\vec r,t)] in time-dependent density functional theory , where ρ(r,t)\rho (\vec r,t) is the time-dependent density, is invariant under the transformation to an accelerated frame of reference ρ(r,t)ρ(r,t)=ρ(r+x(t),t)\rho (\vec r,t) \to \rho ' (\vec r,t) = \rho (\vec r + \vec x (t),t), where x(t)\vec x (t) is an arbitrary function of time. This invariance implies that the exchange-correlation potential in the Kohn-Sham equation transforms in the following manner: Vxc[ρ;r,t]=Vxc[ρ;r+x(t),t]V_{xc}[\rho '; \vec r, t] = V_{xc}[\rho; \vec r + \vec x (t),t]. Some of the approximate formulas that have been proposed for VxcV_{xc} satisfy this exact transformation property, others do not. Those which transform in the correct manner automatically satisfy the ``harmonic potential theorem", i.e. the separation of the center of mass motion for a system of interacting particles in the presence of a harmonic external potential. A general method to generate functionals which possess the correct symmetry is proposed

    Correlation energy of a two-dimensional electron gas from static and dynamic exchange-correlation kernels

    Full text link
    We calculate the correlation energy of a two-dimensional homogeneous electron gas using several available approximations for the exchange-correlation kernel fxc(q,ω)f_{\rm xc}(q,\omega) entering the linear dielectric response of the system. As in the previous work of Lein {\it et al.} [Phys. Rev. B {\bf 67}, 13431 (2000)] on the three-dimensional electron gas, we give attention to the relative roles of the wave number and frequency dependence of the kernel and analyze the correlation energy in terms of contributions from the (q,iω)(q, i\omega) plane. We find that consistency of the kernel with the electron-pair distribution function is important and in this case the nonlocality of the kernel in time is of minor importance, as far as the correlation energy is concerned. We also show that, and explain why, the popular Adiabatic Local Density Approximation performs much better in the two-dimensional case than in the three-dimensional one.Comment: 9 Pages, 4 Figure
    corecore