184 research outputs found

    The effect of z-binding yarns on the electrical properties of 3D woven composites

    Get PDF
    Electrical resistance monitoring (ERM) has been used to study the effect of the z-binding yarns on the initial electrical resistance (ER) and its change of three architectures of 3D woven carbon fibre composites namely (orthogonal “ORT”, layer-to-layer “LTL” and angle interlock “AI”) when tested in tension. Specimens are loaded in on-axis “warp” and off-axis “45°” directions. In-situ ERM is achieved using the four-probe technique. Monotonic and cyclic “load/unload” tests are performed to investigate the effect of piezo-resistivity and residual plasticity on resistance variation. The resistance increase for the off-axis loaded specimens (∼90%) is found to be higher than that of their on-axis counterparts (∼20%). In the case of cyclic testing, the resistance increase upon unloading is irreversible which suggests permanent damage presence not piezo-resistive effect. At the moment, it is difficult to obtain a direct correlation between resistance variation and damage in 3D woven composites due to the complexity of the conduction path along the three orthogonal directions, however this study demonstrates the potential of using ERM for damage detection in 3D woven carbon fibre-based composites and highlights the challenges that need to be overcome to establish ERM as a Structural Health Monitoring (SHM) technique for such material systems

    Une nouvelle procédure d’identification des paramètres de lois cohésives

    Get PDF
    L’objectif est ici d’introduire un nouvel outil de caractérisation de lois cohésives, modèle le plus couramment utilisé pour décrire et simuler le phénomène de délaminage. Cet outil est basé sur une méthode de corrélation d’image globale, où la définition de l’espace de recherche cinématique est adéquatement choisie. Après avoir présenté le principe de cette méthode, on s’intéresse à sa validation, ainsi qu’à son comportement au bruit. Cette validation est réalisée numériquement, (i) en construisant un ensemble d’images à l’aide d’un outil de simulation évolué du délaminage et (ii) en identifiant à partir de ces images les caractéristiques du comportement de l’interface

    A Virtual Testing Approach for Laminated Composites Based on Micromechanics

    Get PDF
    International audienceThe chapter deals with a crucial question for the design of composite structures: how can one predict the evolution of damage up to and including final fracture? Virtual testing, whose goal is to drastically reduce the huge number of industrial tests involved in current characterization procedures, constitutes one of today’s main industrial challenges. In this work, one revisits our multiscale modeling answer through its practical aspects. Some complements regarding identification, kinking, and crack initiation are also given. Finally, the current capabilities and limits of this approach are discussed, as well as the computational challenges that are inherent to “Virtual Structural Testing.

    Rubber Impact on 3D Textile Composites

    Get PDF
    A low velocity impact study of aircraft tire rubber on 3D textile-reinforced composite plates was performed experimentally and numerically. In contrast to regular unidirectional composite laminates, no delaminations occur in such a 3D textile composite. Yarn decohesions, matrix cracks and yarn ruptures have been identified as the major damage mechanisms under impact load. An increase in the number of 3D warp yarns is proposed to improve the impact damage resistance. The characteristic of a rubber impact is the high amount of elastic energy stored in the impactor during impact, which was more than 90% of the initial kinetic energy. This large geometrical deformation of the rubber during impact leads to a less localised loading of the target structure and poses great challenges for the numerical modelling. A hyperelastic Mooney-Rivlin constitutive law was used in Abaqus/Explicit based on a step-by-step validation with static rubber compression tests and low velocity impact tests on aluminium plates. Simulation models of the textile weave were developed on the meso- and macro-scale. The final correlation between impact simulation results on 3D textile-reinforced composite plates and impact test data was promising, highlighting the potential of such numerical simulation tools

    Modification of Oligomers and Reinforced Polymeric Composites by Carbon Nanotubes and Ultrasonic

    Get PDF
    An abridged version of the book chapter is presented in the archive. Full version on the publisher's site: https://link.springer.com/chapter/10.1007/978-3-030-26672-1_3Розглядається широке коло питань щодо розроблених напрямів модифікації епоксидних олігомерів і армованих полімерних композитів на їх основі вуглецевими нанотрубками і ультразвуком. Аналізується перспективність створення гібридних полімерних композитів функціонального призначення.This chapter analyzes the physical (in the form of ultrasound) and chemical modification of liquid polymer media and reinforced polymeric composites. The main emphasis is made on the analysis of ultrasonic cavitation processing as the most effective one for solving one of the main technological problems in the production of nanomodified polymer composites

    Hijacking of the Pleiotropic Cytokine Interferon-γ by the Type III Secretion System of Yersinia pestis

    Get PDF
    Yersinia pestis, the causative agent of bubonic plague, employs its type III secretion system to inject toxins into target cells, a crucial step in infection establishment. LcrV is an essential component of the T3SS of Yersinia spp, and is able to associate at the tip of the secretion needle and take part in the translocation of anti-host effector proteins into the eukaryotic cell cytoplasm. Upon cell contact, LcrV is also released into the surrounding medium where it has been shown to block the normal inflammatory response, although details of this mechanism have remained elusive. In this work, we reveal a key aspect of the immunomodulatory function of LcrV by showing that it interacts directly and with nanomolar affinity with the inflammatory cytokine IFNγ. In addition, we generate specific IFNγ mutants that show decreased interaction capabilities towards LcrV, enabling us to map the interaction region to two basic C-terminal clusters of IFNγ. Lastly, we show that the LcrV-IFNγ interaction can be disrupted by a number of inhibitors, some of which display nanomolar affinity. This study thus not only identifies novel potential inhibitors that could be developed for the control of Yersinia-induced infection, but also highlights the diversity of the strategies used by Y. pestis to evade the immune system, with the hijacking of pleiotropic cytokines being a long-range mechanism that potentially plays a key role in the severity of plague
    corecore