3,882 research outputs found

    Most of the genetic covariation between major depressive and alcohol use disorders is explained by trait measures of negative emotionality and behavioral control

    Get PDF
    Background Mental health disorders commonly co-occur, even between conceptually distinct syndromes, such as internalizing and externalizing disorders. The current study investigated whether phenotypic, genetic, and environmental variance in negative emotionality and behavioral control account for the covariation between major depressive disorder (MDD) and alcohol use disorder (AUD). Method A total of 3623 members of a national twin registry were administered structured diagnostic telephone interviews that included assessments of lifetime histories of MDD and AUD, and were mailed self-report personality questionnaires that assessed stress reactivity (SR) and behavioral control (CON). A series of biometric models were fitted to partition the proportion of covariance between MDD and AUD into SR and CON. Results A statistically significant proportion of the correlation between MDD and AUD was due to variance specific to SR (men = 0.31, women = 0.27) and CON (men = 0.20, women = 0.19). Further, genetic factors explained a large proportion of this correlation (0.63), with unique environmental factors explaining the rest. SR explained a significant proportion of the genetic (0.33) and environmental (0.23) overlap between MDD and AUD. In contrast, variance specific to CON accounted for genetic overlap (0.32), but not environmental overlap (0.004). In total, SR and CON accounted for approximately 70% of the genetic and 20% of the environmental covariation between MDD and AUD. Conclusions This is the first study to demonstrate that negative emotionality and behavioral control confer risk for the co-occurrence of MDD and AUD via genetic factors. These findings are consistent with the aims of NIMH's RDoC proposal to elucidate how transdiagnostic risk factors drive psychopathology

    The Primate Wrist

    Get PDF
    This book demonstrates how the primate hand combines both primitive and novel morphology, both general function with specialization, and both a remarkable degree of diversity within some clades and yet general similarity across many others. Across the chapters, different authors have addressed a variety of specific questions and provided their perspectives, but all explore the main themes described above to provide an overarching “primitive primate hand” thread to the book. Each chapter provides an in-depth review and critical account of the available literature, a balanced interpretation of the evidence from a variety of perspectives, and prospects for future research questions. In order to make this a useful resource for researchers at all levels, the basic structure of each chapter is the same, so that information can be easily consulted from chapter to chapter. An extensive reference list is provided at the end of each chapter so the reader has additional resources to address more specific questions or to find specific data

    Sensitivity of Second Harmonic Generation to Space Charge Effects at Si(111)/Electrolyte and Si(111)/SiO\u3csub\u3e2\u3c/sub\u3e/Electrolyte Interfaces

    Get PDF
    The potential dependence in the surface second harmonic response from hydrogen terminated n‐Si(111) and oxidized n‐Si(111) surfaces has been examined in aqueous NH4F and H2SO4 solutions. The relative phase of the nonlinear response as measured by rotational anisotropy experiments is found to be highly sensitive to the presence of the oxide and the field applied across the Si(111)/oxide/electrolyte interface. These observations are attributed to field effects within the space–charge region of the semiconductor which vary with the presence and thickness of the insulating oxide layer on the Si(111) surface

    Recent origin of low trabecular bone density in modern humans

    Get PDF
    Humans are unique, compared with our closest living relatives (chimpanzees) and early fossil hominins, in having an enlarged body size and lower limb joint surfaces in combination with a relatively gracile skeleton (i.e., lower bone mass for our body size). Some analyses have observed that in at least a few anatomical regions modern humans today appear to have relatively low trabecular density, but little is known about how that density varies throughout the human skeleton and across species or how and when the present trabecular patterns emerged over the course of human evolution. Here, we test the hypotheses that (i) recent modern humans have low trabecular density throughout the upper and lower limbs compared with other primate taxa and (ii) the reduction in trabecular density first occurred in early Homo erectus, consistent with the shift toward a modern human locomotor anatomy, or more recently in concert with diaphyseal gracilization in Holocene humans. We used peripheral quantitative CT and microtomography to measure trabecular bone of limb epiphyses (long bone articular ends) in modern humans and chimpanzees and in fossil hominins attributed to Australopithecus africanus, Paranthropus robustus/early Homo from Swartkrans, Homo neanderthalensis, and early Homo sapiens. Results show that only recent modern humans have low trabecular density throughout the limb joints. Extinct hominins, including pre-Holocene Homo sapiens, retain the high levels seen in nonhuman primates. Thus, the low trabecular density of the recent modern human skeleton evolved late in our evolutionary history, potentially resulting from increased sedentism and reliance on technological and cultural innovations

    The Discovery of Cepheids and a New Distance to NGC 2841 Using the Hubble Space Telescope

    Get PDF
    We report on the discovery of Cepheids in the spiral galaxy NGC 2841, based on observations made with the Wide Field and Planetary Camera 2 on board the Hubble Space Telescope. NGC 2841 was observed over 12 epochs using the F555W filter, and over 5 epochs using the F814W filter. Photometry was performed using the DAOPHOT/ALLFRAME package. We discovered a total of 29 variables, including 18 high-quality Cepheids with periods ranging from 15 to 40 days. Period-luminosity relations in the V and I bands, based on the high-quality Cepheids, yield an extinction-corrected distance modulus of 30.74 +/- 0.23 mag, which corresponds to a distance of 14.1 +/- 1.5 Mpc. Our distance is based on an assumed LMC distance modulus of 18.50 +/- 0.10 mag (D = 50+/- 2.5 kpc) and a metallicity dependence of the Cepheid P-L relation of gamma (VI) = -0.2 +/- 0.2 mag/dex.Comment: 31 preprint pages including 10 figures. Accepted for publication in ApJ. High-resolution version available from http://cfa-www.harvard.edu/~lmacri/n2841.p

    Effects of Differential Pine Vole Populations on Growth and Yield of McIntosh Apple Trees

    Get PDF
    Pine voles (Microtus pinetorum LeConte) were maintained as known populations (0, 269, 538 and 1075/ha) in wire mesh-enclosed blocks of \u27McIntosh\u27/M26 apple trees (Malus domestica Borkh.) for 2 years. There was little measurable effect of the voles on growth and production the 1st year, but during the 2nd year the highest population was associated with the death of one tree; severe reductions in growth, yield, and fruit size; a 78% reduction in crown bark weight, 56% loss of fibrous roots, and a dramatic reduction in the value of the crop. Although the low and the medium populations showed little effect on yield, there was a reduction in vegetative growth in the medium population plot that was associated with extensive root girdling, fibrous root reduction and substantial bark loss by the end of the 2nd year

    Fermi-Dirac statistics and the number theory

    Full text link
    We relate the Fermi-Dirac statistics of an ideal Fermi gas in a harmonic trap to partitions of given integers into distinct parts, studied in number theory. Using methods of quantum statistical physics we derive analytic expressions for cumulants of the probability distribution of the number of different partitions.Comment: 7pages, 2 figures, epl.cls, revised versio

    A pitfall in the reconstruction of fibre ODFs using spherical deconvolution of diffusion MRI data

    Get PDF
    Diffusion weighted ( DW ) MRI facilitates non-invasive quantification of tissue microstructure and, in combination with appropriate signal processing, three-dimensional estimates of fibrous orientation. In recent years, attention has shifted from the diffusion tensor model, which assumes a unimodal Gaussian diffusion displacement profile to recover fibre orientation ( with various well-documented limitations ), towards more complex high angular resolution diffusion imaging ( HARDI ) analysis techniques. Spherical deconvolution ( SD ) approaches assume that the fibre orientation density function ( fODF ) within a voxel can be obtained by deconvolving a ‘common’ single fibre response function from the observed set of DW signals. In practice, this common response function is not known a priori and thus an estimated fibre response must be used. Here the establishment of this single-fibre response function is referred to as ‘calibration’. This work examines the vulnerability of two different SD approaches to inappropriate response function calibration: ( 1 ) constrained spherical harmonic deconvolution ( CSHD )—a technique that exploits spherical harmonic basis sets and ( 2 ) damped Richardson–Lucy ( dRL ) deconvolution—a technique based on the standard Richardson–Lucy deconvolution. Through simulations, the impact of a discrepancy between the calibrated diffusion profiles and the observed ( ‘Target’ ) DW-signals in both single and crossing-fibre configurations was investigated. The results show that CSHD produces spurious fODF peaks ( consistent with well known ringing artefacts ) as the discrepancy between calibration and target response increases, while dRL demonstrates a lower over-all sensitivity to miscalibration ( with a calibration response function for a highly anisotropic fibre being optimal ). However, dRL demonstrates a reduced ability to resolve low anisotropy crossing-fibres compared to CSHD. It is concluded that the range and spatial-distribution of expected single-fibre anisotropies within an image must be carefully considered to ensure selection of the appropriate algorithm, parameters and calibration. Failure to choose the calibration response function carefully may severely impact the quality of any resultant tractography
    • 

    corecore