1,739 research outputs found

    Extremal quantum cloning machines

    Full text link
    We investigate the problem of cloning a set of states that is invariant under the action of an irreducible group representation. We then characterize the cloners that are "extremal" in the convex set of group covariant cloning machines, among which one can restrict the search for optimal cloners. For a set of states that is invariant under the discrete Weyl-Heisenberg group, we show that all extremal cloners can be unitarily realized using the so-called "double-Bell states", whence providing a general proof of the popular ansatz used in the literature for finding optimal cloners in a variety of settings. Our result can also be generalized to continuous-variable optimal cloning in infinite dimensions, where the covariance group is the customary Weyl-Heisenberg group of displacements.Comment: revised version accepted for publicatio

    The relative impact of vision impairment and cardiovascular disease on quality of life: the example of pseudoxanthoma elasticum

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>To investigate the impact of pseudoxanthoma elasticum (PXE), a rare hereditary disease of concurrent vision impairment (VI) and cardiovascular complications (CVCs), on vision-related (VRQoL) and health-related quality of life (HRQoL).</p> <p>Methods</p> <p>VRQoL and HRQoL were assessed using the Impact of Vision Impairment (IVI) questionnaire and the Short Form Health Survey (SF-36) in 107 PXE patients. Patients were stratified into four groups: A = no VI or CVC; B = CVCs only; C = VI only; and D = both VI and CVCs.</p> <p>Results</p> <p>Following Rasch analysis, the IVI was found to function as a vision-specific functioning and emotional well-being subscale, and the SF-36 as a health-related physical functioning and mental health subscale. The presence of VI and CVC were significant predictors of vision-specific functioning and emotional well-being (p < 0.001), with a clinically meaningful decrement in vision-specific functioning in patients with VI. No associations were found for the SF-36 Physical Functioning and Mental Health scores between any groups.</p> <p>Conclusions</p> <p>Vision impaired patients with PXE report significantly poorer vision-specific functioning than PXE patients without VI. In contrast, the relative impact of PXE on reported general HRQoL was much less. Our results suggest that vision impairment has the larger impact on QoL in this sample.</p

    Thermal phase diagrams of columnar liquid crystals

    Full text link
    In order to understand the possible sequence of transitions from the disordered columnar phase to the helical phase in hexa(hexylthio)triphenylene (HHTT), we study a three-dimensional planar model with octupolar interactions inscribed on a triangular lattice of columns. We obtain thermal phase diagrams using a mean-field approximation and Monte Carlo simulations. These two approaches give similar results, namely, in the quasi one-dimensional regime, as the temperature is lowered, the columns order with a linear polarization, whereas helical phases develop at lower temperatures. The helicity patterns of the helical phases are determined by the exact nature of the frustration in the system, itself related to the octupolar nature of the molecules.Comment: 12 pages, 9 figures, ReVTe

    Symmetries in Quantum Key Distribution and the Connection between Optimal Attacks and Optimal Cloning

    Full text link
    We investigate the connection between the optimal collective eavesdropping attack and the optimal cloning attack where the eavesdropper employs an optimal cloner to attack the quantum key distribution (QKD) protocol. The analysis is done in the context of the security proof in [Devetak and Winter, Proc. of the Roy. Soc. of London Series A, 461, 207 (2005); Kraus, Gisin and Renner, Phys. Rev. Lett. 95, 080501 (2005)] for discrete variable protocols in d-dimensional Hilbert spaces. We consider a scenario in which the protocols and cloners are equipped with symmetries. These symmetries are used to define a quantum cloning scenario. We find that, in general, it does not hold that the optimal attack is an optimal cloner. However, there are classes of protocols, where we can identify an optimal attack by an optimal cloner. We analyze protocols with 2, d and d+1 mutually unbiased bases where d is a prime, and show that for the protocols with 2 and d+1 MUBs the optimal attack is an optimal cloner, but for the protocols with d MUBs, it is not. Finally, we give criteria to identify protocols which have different signal states, but the same optimal attack. Using these criteria, we present qubit protocols which have the same optimal attack as the BB84 protocol or the 6-state protocol

    Neutrino Telescopes' Sensitivity to Dark Matter

    Full text link
    The nature of the dark matter of the Universe is yet unknown and most likely is connected with new physics. The search for its composition is under way through direct and indirect detection. Fundamental physical aspects such as energy threshold, geometry and location are taken into account to investigate proposed neutrino telescopes of km^3 volume sensitivities to dark matter. These sensitivities are just sufficient to test a few WIMP scenarios. Telescopes of km^3 volume, such as IceCube, can definitely discover or exclude superheavy (M > 10^10 GeV) Strong Interacting Massive Particles (Simpzillas). Smaller neutrino telescopes such as ANTARES, AMANDA-II and NESTOR can probe a large region of the Simpzilla parameter space.Comment: 28 pages, 9 figure

    Quantum memory for entangled two-mode squeezed states

    Full text link
    A quantum memory for light is a key element for the realization of future quantum information networks. Requirements for a good quantum memory are (i) versatility (allowing a wide range of inputs) and (ii) true quantum coherence (preserving quantum information). Here we demonstrate such a quantum memory for states possessing Einstein-Podolsky-Rosen (EPR) entanglement. These multi-photon states are two-mode squeezed by 6.0 dB with a variable orientation of squeezing and displaced by a few vacuum units. This range encompasses typical input alphabets for a continuous variable quantum information protocol. The memory consists of two cells, one for each mode, filled with cesium atoms at room temperature with a memory time of about 1msec. The preservation of quantum coherence is rigorously proven by showing that the experimental memory fidelity 0.52(2) significantly exceeds the benchmark of 0.45 for the best possible classical memory for a range of displacements.Comment: main text 5 pages, supplementary information 3 page

    Weak Lensing from Space I: Instrumentation and Survey Strategy

    Full text link
    A wide field space-based imaging telescope is necessary to fully exploit the technique of observing dark matter via weak gravitational lensing. This first paper in a three part series outlines the survey strategies and relevant instrumental parameters for such a mission. As a concrete example of hardware design, we consider the proposed Supernova/Acceleration Probe (SNAP). Using SNAP engineering models, we quantify the major contributions to this telescope's Point Spread Function (PSF). These PSF contributions are relevant to any similar wide field space telescope. We further show that the PSF of SNAP or a similar telescope will be smaller than current ground-based PSFs, and more isotropic and stable over time than the PSF of the Hubble Space Telescope. We outline survey strategies for two different regimes - a ``wide'' 300 square degree survey and a ``deep'' 15 square degree survey that will accomplish various weak lensing goals including statistical studies and dark matter mapping.Comment: 25 pages, 8 figures, 1 table, replaced with Published Versio

    Limits to the muon flux from WIMP annihilation in the center of the Earth with the AMANDA detector

    Full text link
    A search for nearly vertical up-going muon-neutrinos from neutralino annihilations in the center of the Earth has been performed with the AMANDA-B10 neutrino detector. The data sample collected in 130.1 days of live-time in 1997, ~10^9 events, has been analyzed for this search. No excess over the expected atmospheric neutrino background is oberved. An upper limit at 90% confidence level on the annihilation rate of neutralinos in the center of the Earth is obtained as a function of the neutralino mass in the range 100 GeV-5000 GeV, as well as the corresponding muon flux limit.Comment: 14 pages, 11 figures. Version accepted for publication in Physical Review
    • 

    corecore