10,991 research outputs found

    Closing the Sanitation Gap: The Case for Better Public Funding of Sanitation and Hygiene

    No full text
    Slow progress is being made towards the achievement of the Millennium Development Goal for sanitation despite the fact that investments in sanitation have significant health, educational and economic benefits. More action is needed to improve the quality and accountability of service delivery. This report presents and summarises all the latest information on benefits and costs of sanitation and lays out proposals for government and donor action to address the problem

    Quantum Gauge Equivalence in QED

    Full text link
    We discuss gauge transformations in QED coupled to a charged spinor field, and examine whether we can gauge-transform the entire formulation of the theory from one gauge to another, so that not only the gauge and spinor fields, but also the forms of the operator-valued Hamiltonians are transformed. The discussion includes the covariant gauge, in which the gauge condition and Gauss's law are not primary constraints on operator-valued quantities; it also includes the Coulomb gauge, and the spatial axial gauge, in which the constraints are imposed on operator-valued fields by applying the Dirac-Bergmann procedure. We show how to transform the covariant, Coulomb and spatial axial gauges to what we call ``common form,'' in which all particle excitation modes have identical properties. We also show that, once that common form has been reached, QED in different gauges has a common time-evolution operator that defines time-translation for states that represent systems of electrons and photons. By combining gauge transformations with changes of representation from standard to common form, the entire apparatus of a gauge theory can be transformed from one gauge to another.Comment: Contribution for a special issue of Foundations of Physics honoring Fritz Rohrlich; edited by Larry P. Horwitz, Tel-Aviv University, and Alwyn van der Merwe, University of Denver (Plenum Publishing, New York); 40 pages, REVTEX, Preprint UCONN-93-3, 1 figure available upon request from author

    Persistent Transport Barrier on the West Florida Shelf

    Get PDF
    Analysis of drifter trajectories in the Gulf of Mexico has revealed the existence of a region on the southern portion of the West Florida Shelf (WFS) that is not visited by drifters that are released outside of the region. This so-called ``forbidden zone'' (FZ) suggests the existence of a persistent cross-shelf transport barrier on the southern portion of the WFS. In this letter a year-long record of surface currents produced by a Hybrid-Coordinate Ocean Model simulation of the WFS is used to identify Lagrangian coherent structures (LCSs), which reveal the presence of a robust and persistent cross-shelf transport barrier in approximately the same location as the boundary of the FZ. The location of the cross-shelf transport barrier undergoes a seasonal oscillation, being closer to the coast in the summer than in the winter. A month-long record of surface currents inferred from high-frequency (HF) radar measurements in a roughly 60 km ×\times 80 km region on the WFS off Tampa Bay is also used to identify LCSs, which reveal the presence of robust transient transport barriers. While the HF-radar-derived transport barriers cannot be unambiguously linked to the boundary of the FZ, this analysis does demonstrate the feasibility of monitoring transport barriers on the WFS using a HF-radar-based measurement system. The implications of a persistent cross-shelf transport barrier on the WFS for the development of harmful algal blooms on the shoreward side of the barrier are considered.Comment: Submitted to Geophysical Research Letter

    Regrowth-related defect formation and evolution in 1 MeV amorphized (001) Ge

    Get PDF
    Geimplanted with 1MeV Si⁺ at a dose of 1×10¹⁵cm⁻² creates a buried amorphous layer that, upon regrowth, exhibits several forms of defects–end-of-range (EOR), regrowth-related, and clamshell defects. Unlike Si, no planar {311} defects are observed. The minimal EOR defects are small dotlike defects and are very unstable, dissolving between 450 and 550°C. This is in contrast to Si, where the EOR defects are very stable. The amorphous layer results in both regrowth-related defects and clamshell defects, which were more stable than the EOR damage.This work is supported by Semiconductor Research Corporation Contract No. 00057787

    Parabolic resonances and instabilities in near-integrable two degrees of freedom Hamiltonian flows

    Full text link
    When an integrable two-degrees-of-freedom Hamiltonian system possessing a circle of parabolic fixed points is perturbed, a parabolic resonance occurs. It is proved that its occurrence is generic for one parameter families (co-dimension one phenomenon) of near-integrable, t.d.o. systems. Numerical experiments indicate that the motion near a parabolic resonance exhibits new type of chaotic behavior which includes instabilities in some directions and long trapping times in others. Moreover, in a degenerate case, near a {\it flat parabolic resonance}, large scale instabilities appear. A model arising from an atmospherical study is shown to exhibit flat parabolic resonance. This supplies a simple mechanism for the transport of particles with {\it small} (i.e. atmospherically relevant) initial velocities from the vicinity of the equator to high latitudes. A modification of the model which allows the development of atmospherical jets unfolds the degeneracy, yet traces of the flat instabilities are clearly observed

    Specifications and programs for computer software validation

    Get PDF
    Three software products developed during the study are reported and include: (1) FORTRAN Automatic Code Evaluation System, (2) the Specification Language System, and (3) the Array Index Validation System

    Slow decay of concentration variance due to no-slip walls in chaotic mixing

    Full text link
    Chaotic mixing in a closed vessel is studied experimentally and numerically in different 2-D flow configurations. For a purely hyperbolic phase space, it is well-known that concentration fluctuations converge to an eigenmode of the advection-diffusion operator and decay exponentially with time. We illustrate how the unstable manifold of hyperbolic periodic points dominates the resulting persistent pattern. We show for different physical viscous flows that, in the case of a fully chaotic Poincare section, parabolic periodic points at the walls lead to slower (algebraic) decay. A persistent pattern, the backbone of which is the unstable manifold of parabolic points, can be observed. However, slow stretching at the wall forbids the rapid propagation of stretched filaments throughout the whole domain, and hence delays the formation of an eigenmode until it is no longer experimentally observable. Inspired by the baker's map, we introduce a 1-D model with a parabolic point that gives a good account of the slow decay observed in experiments. We derive a universal decay law for such systems parametrized by the rate at which a particle approaches the no-slip wall.Comment: 17 pages, 12 figure

    Walls Inhibit Chaotic Mixing

    Get PDF
    We report on experiments of chaotic mixing in a closed vessel, in which a highly viscous fluid is stirred by a moving rod. We analyze quantitatively how the concentration field of a low-diffusivity dye relaxes towards homogeneity, and we observe a slow algebraic decay of the inhomogeneity, at odds with the exponential decay predicted by most previous studies. Visual observations reveal the dominant role of the vessel wall, which strongly influences the concentration field in the entire domain and causes the anomalous scaling. A simplified 1D model supports our experimental results. Quantitative analysis of the concentration pattern leads to scalings for the distributions and the variance of the concentration field consistent with experimental and numerical results.Comment: 4 pages, 3 figure

    Flow and magnetic structures in a kinematic ABC-dynamo

    Get PDF
    Dynamo theory describes the magnetic field induced by the rotating, convecting and electrically conducting fluid in a celestial body. The classical ABC-flow model represents fast dynamo action, required to sustain such a magnetic field. In this letter, Lagrangian coherent structures (LCSs) in the ABC-flow are detected through Finite-time Lyapunov exponents (FTLE). The flow skeleton is identified by extracting intersections between repelling and attracting LCSs. For the case A = B = C = 1, the skeleton structures are made up from lines connecting two different types of stagnation points in the ABC-flow. The corresponding kinematic ABC-dynamo problem is solved using a spectral method, and the distribution of cigar-like magnetic structures visualized. Inherent links are found to exist between LCSs in the ABC-flow and induced magnetic structures, which provides insight into the mechanism behind the ABC-dynamo
    corecore