72 research outputs found

    Moessbauer/XRF MIMOS Instrumentation and Operation During the 2012 Analog Field Test on Mauna Kea Volcano, Hawaii

    Get PDF
    Field testing and scientific investigations were conducted on the Mauna Kea Volcano, Hawaii, as part of the 2012 Moon and Mars Analog Mission Activities (MMAMA). Measurements were conducted using both stand-alone and rover-mounted instruments to determine the geophysical and geochemical properties of the field site, as well as provide operational constraints and science considerations for future robotic and human missions [1]. Reported here are the results from the two MIMOS instruments deployed as part of this planetary analog field test

    An East to West Mineralogical Trend in Mars Exploration Rover Spirit Moessbauer Spectra of Home Plate

    Get PDF
    Home Plate is a light-toned plateau approx.90 m in diameter within the Inner Basin of the Columbia Hills in Gusev crater on Mars. It is the most extensive exposure of layered bedrock encountered by Spirit to date, and it is composed of clastic rocks of moderately altered alkali basalt composition, enriched in some highly volatile elements. Textural observations suggest an explosive origin and geochemical observations favor volcanism, probably a hydrovolcanic explosion [1]. Since it first arrived at Home Plate on sol 744, Spirit has circumnavigated the plateau (Fig. 1) and is now, since sol 1410, resting at its Winter Haven 3 location at the north end of Home Plate. Results: The MER Moessbauer spectrometers determine Fe oxidation states, identify Fe-bearing mineral phases and quantify the distribution of Fe among oxidation states and mineral phases [2]. Moessbauer spectra of Home Plate bedrock were obtained in five different locations from nine different targets (Fig. 1): Barnhill Ace, Posey Manager, and James Cool Papa Bell Stars at the northwest side of Home Plate; Pesapallo, June Emerson, and Elizabeth Emery on the east side; Texas Chili on the south side; Pecan Pie on the west side; and Chanute on the north side

    Two Years of Chemical Sampling on Meridiani Planum by the Alpha Particle X-Ray Spectrometer Onboard the Mars Exploration Rover Opportunity

    Get PDF
    For over two terrestrial years, the Mars Exploration Rover Opportunity has been exploring the martian surface at Meridiani Planum using the Athena instrument payload [1], including the Alpha Particle X-Ray Spectrometer (APXS). The APXS has a small sensor head that is mounted on the robotic arm of the rover. The chemistry, mineralogy and morphology of selected samples were investigated by the APXS along with the Moessbauer Spectrometer (MB) and the Microscopic Imager (MI). The Rock Abrasion Tool (RAT) provided the possibility to dust and/or abrade rock surfaces down to several millimeters to expose fresh material for analysis. We report here on APXS data gathered along the nearly 6-kilometers long traverse in craters and plains of Meridiani

    Origin of acidic surface waters and the evolution of atmospheric chemistry on early Mars

    Get PDF
    Observations from in situ experiments and planetary orbiters have shown that the sedimentary rocks found at Meridiani Planum, Mars were formed in the presence of acidic surface waters. The water was thought to be brought to the surface by groundwater upwelling, and may represent the last vestiges of the widespread occurrence of liquid water on Mars. However, it is unclear why the surface waters were acidic. Here we use geochemical calculations, constrained by chemical and mineralogical data from the Mars Exploration Rover Opportunity, to show that Fe oxidation and the precipitation of oxidized iron (Fe^(3+)) minerals generate excess acid with respect to the amount of base anions available in the rocks present in outcrop. We suggest that subsurface waters of near-neutral pH and rich in Fe^(2+) were rapidly acidified as iron was oxidized on exposure to O_2 or photo-oxidized by ultraviolet radiation at the martian surface. Temporal variation in surface acidity would have been controlled by the availability of liquid water, and as such, low-pH fluids could be a natural consequence of the aridification of the martian surface. Finally, because iron oxidation at Meridiani would have generated large amounts of gaseous H_2, ultimately derived from the reduction of H_2O, we conclude that surface geochemical processes would have affected the redox state of the early martian atmosphere

    Joining S100 proteins and migration:for better or for worse, in sickness and in health

    Get PDF
    The vast diversity of S100 proteins has demonstrated a multitude of biological correlations with cell growth, cell differentiation and cell survival in numerous physiological and pathological conditions in all cells of the body. This review summarises some of the reported regulatory functions of S100 proteins (namely S100A1, S100A2, S100A4, S100A6, S100A7, S100A8/S100A9, S100A10, S100A11, S100A12, S100B and S100P) on cellular migration and invasion, established in both culture and animal model systems and the possible mechanisms that have been proposed to be responsible. These mechanisms involve intracellular events and components of the cytoskeletal organisation (actin/myosin filaments, intermediate filaments and microtubules) as well as extracellular signalling at different cell surface receptors (RAGE and integrins). Finally, we shall attempt to demonstrate how aberrant expression of the S100 proteins may lead to pathological events and human disorders and furthermore provide a rationale to possibly explain why the expression of some of the S100 proteins (mainly S100A4 and S100P) has led to conflicting results on motility, depending on the cells used. © 2013 Springer Basel

    The Wnt-dependent signaling pathways as target in oncology drug discovery

    Get PDF
    Our current understanding of the Wnt-dependent signaling pathways is mainly based on studies performed in a number of model organisms including, Xenopus, Drosophila melanogaster, Caenorhabditis elegans and mammals. These studies clearly indicate that the Wnt-dependent signaling pathways are conserved through evolution and control many events during embryonic development. Wnt pathways have been shown to regulate cell proliferation, morphology, motility as well as cell fate. The increasing interest of the scientific community, over the last decade, in the Wnt-dependent signaling pathways is supported by the documented importance of these pathways in a broad range of physiological conditions and disease states. For instance, it has been shown that inappropriate regulation and activation of these pathways is associated with several pathological disorders including cancer, retinopathy, tetra-amelia and bone and cartilage disease such as arthritis. In addition, several components of the Wnt-dependent signaling pathways appear to play important roles in diseases such as Alzheimer’s disease, schizophrenia, bipolar disorder and in the emerging field of stem cell research. In this review, we wish to present a focused overview of the function of the Wnt-dependent signaling pathways and their role in oncogenesis and cancer development. We also want to provide information on a selection of potential drug targets within these pathways for oncology drug discovery, and summarize current data on approaches, including the development of small-molecule inhibitors, that have shown relevant effects on the Wnt-dependent signaling pathways

    Microbial life in volcanic lakes

    Get PDF
    Lakes in the craters of active volcanoes and their related streams are often characterised by conditions considered extreme for life, such as high temperatures, low pH and very high concentrations of dissolved metals and minerals. Such lakes tend to be transient features whose geochemistry can change markedly over short time periods. They might also vanish completely during eruption episodes or by drainage through the crater wall or floor. These lakes and their effluent streams and springs host taxonomically and metabolically diverse microorganisms belonging in the Archaea, Bacteria, and Eucarya. In volcanic ecosystems the relation between geosphere and biosphere is particularly tight; microbial community diversity is shaped by the geochemical parameters of the lake, and by the activities of microbes interacting with the water and sediments. Sampling these lakes is often challenging, and few have even been sampled once, especially in a microbiological context. Developments in high-throughput cultivation procedures, single-cell selection techniques, and massive increases in DNA sequencing throughput, should encourage efforts to define which microbes inhabit these features and how they interact with each other and the volcano. The study of microbial communities in volcanic lake systems sheds light on possible origins of life on early Earth. Other potential outcomes include the development of microbial inocula to promote plant growth in altered or degraded soils, bioremediation of contaminated waste or land, and the discovery of enzymes or other proteins industrial or medical applications

    The Sample Analysis at Mars Investigation and Instrument Suite

    Full text link
    corecore