34 research outputs found
Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results
The chromosphere is a thin layer of the solar atmosphere that bridges the
relatively cool photosphere and the intensely heated transition region and
corona. Compressible and incompressible waves propagating through the
chromosphere can supply significant amounts of energy to the interface region
and corona. In recent years an abundance of high-resolution observations from
state-of-the-art facilities have provided new and exciting ways of
disentangling the characteristics of oscillatory phenomena propagating through
the dynamic chromosphere. Coupled with rapid advancements in
magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly
investigate the role waves play in supplying energy to sustain chromospheric
and coronal heating. Here, we review the recent progress made in
characterising, categorising and interpreting oscillations manifesting in the
solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review
Mathematical modelling and numerical simulation of the morphological development of neurons
BACKGROUND: The morphological development of neurons is a very complex process involving both genetic and environmental components. Mathematical modelling and numerical simulation are valuable tools in helping us unravel particular aspects of how individual neurons grow their characteristic morphologies and eventually form appropriate networks with each other. METHODS: A variety of mathematical models that consider (1) neurite initiation (2) neurite elongation (3) axon pathfinding, and (4) neurite branching and dendritic shape formation are reviewed. The different mathematical techniques employed are also described. RESULTS: Some comparison of modelling results with experimental data is made. A critique of different modelling techniques is given, leading to a proposal for a unified modelling environment for models of neuronal development. CONCLUSION: A unified mathematical and numerical simulation framework should lead to an expansion of work on models of neuronal development, as has occurred with compartmental models of neuronal electrical activity
Quick, accurate, smart: 3D computer vision technology helps assessing confined animals' behaviour
Mankind directly controls the environment and lifestyles of several domestic species for purposes ranging from production and research to conservation and companionship. These environments and lifestyles may not offer these animals the best quality of life. Behaviour is a direct reflection of how the animal is coping with its environment. Behavioural indicators are thus among the preferred parameters to assess welfare. However, behavioural recording (usually from video) can be very time consuming and the accuracy and reliability of the output rely on the experience and background of the observers. The outburst of new video technology and computer image processing gives the basis for promising solutions. In this pilot study, we present a new prototype software able to automatically infer the behaviour of dogs housed in kennels from 3D visual data and through structured machine learning frameworks. Depth information acquired through 3D features, body part detection and training are the key elements that allow the machine to recognise postures, trajectories inside the kennel and patterns of movement that can be later labelled at convenience. The main innovation of the software is its ability to automatically cluster frequently observed temporal patterns of movement without any pre-set ethogram. Conversely, when common patterns are defined through training, a deviation from normal behaviour in time or between individuals could be assessed. The software accuracy in correctly detecting the dogs' behaviour was checked through a validation process. An automatic behaviour recognition system, independent from human subjectivity, could add scientific knowledge on animals' quality of life in confinement as well as saving time and resources. This 3D framework was designed to be invariant to the dog's shape and size and could be extended to farm, laboratory and zoo quadrupeds in artificial housing. The computer vision technique applied to this software is innovative in non-human animal behaviour science. Further improvements and validation are needed, and future applications and limitations are discussed.</p
Propagating Disturbances in Coronal Loops: A Detailed Analysis of Propagation Speeds
Quasi-periodic disturbances have been observed in the outer solar atmosphere
for many years now. Although first interpreted as upflows (Schrijver et al.
(1999)), they have been widely regarded as slow magnetoacoustic waves, due to
observed velocities and periods. However, recent observations have questioned
this interpretation, as periodic disturbances in Doppler velocity, line width
and profile asymmetry were found to be in phase with the intensity oscillations
(De Pontieu et al. (2010),Tian1 et al. (2011))}, suggesting the disturbances
could be quasi-periodic upflows. Here we conduct a detailed analysis of the
velocities of these disturbances across several wavelengths using the
Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory
(SDO). We analysed 41 examples, including both sunspot and non sunspot regions
of the Sun. We found that the velocities of propagating disturbances (PDs)
located at sunspots are more likely to be temperature dependent, whereas the
velocities of PDs at non sunspot locations do not show a clear temperature
dependence. We also considered on what scale the underlying driver is affecting
the properties of the PDs. Finally, we found that removing the contribution due
to the cooler ions in the 193 A wavelength suggests that a substantial part of
the 193 emission of sunspot PDs can be contributed to the cool component of
193\AA.Comment: 26 Papges, 15 Figure
Parent perceptions of the quality of life of pet dogs living with neuro-typically developing and neuro-atypically developing children: an exploratory study
There is growing scientific and societal recognition of the role that pet dogs can play in healthy development of children; both those who are neuro-typically developing and those who live with a neuro-developmental disorder, such as autism or attention deficit hyperactivity disorder. However, little attention has been paid to how living with children positively and negatively affects quality of life of a pet dog. In this exploratory study we conducted semi-structured interviews with parents of neuro-typically developing children (n = 18) and those with a neuro-developmental disorder (n = 18) who owned a pet dog, until no new factors were identified. Living with children brought potentially positive benefits to the dog’s life including: imposition of a routine, participation in recreational activities and the development of a strong bond between the child and the dog. The importance of maintaining a routine was particularly prevalent in families with children with neuro-developmental disorders. Potential negative factors included having to cope with child meltdowns and tantrums, over stimulation from child visitors, harsh contact and rough and tumble play with the child. The regularity and intensity of meltdowns and tantrums was particularly evident in responses from parents with children with a neuro-developmental disorder. However, child visitors and rough play and contact were mentioned similarly across the groups. Protective factors included having a safe haven for the dog to escape to, parent’s awareness of stress signs and child education in dog-interaction. Parents were also asked to complete a stress response scale to provide an initial quantitative comparison of stress responses between dogs living with the two family-types. Parents with neuro-typically developing children more frequently observed their dog rapidly running away from a situation and less frequently observed their dog widening their eyes, than parents with children with a neuro-developmental disorder. We propose the development of a stress audit based on the findings reported here, to prevent potential dangerous situations, which may lead to dog bites and dog relinquishment and allow owners to maximise the benefits of dog ownership
Irbesartan in Marfan syndrome (AIMS): a double-blind, placebo-controlled randomised trial
BACKGROUND:
Irbesartan, a long acting selective angiotensin-1 receptor inhibitor, in Marfan syndrome might reduce aortic dilatation, which is associated with dissection and rupture. We aimed to determine the effects of irbesartan on the rate of aortic dilatation in children and adults with Marfan syndrome.
METHODS:
We did a placebo-controlled, double-blind randomised trial at 22 centres in the UK. Individuals aged 6-40 years with clinically confirmed Marfan syndrome were eligible for inclusion. Study participants were all given 75 mg open label irbesartan once daily, then randomly assigned to 150 mg of irbesartan (increased to 300 mg as tolerated) or matching placebo. Aortic diameter was measured by echocardiography at baseline and then annually. All images were analysed by a core laboratory blinded to treatment allocation. The primary endpoint was the rate of aortic root dilatation. This trial is registered with ISRCTN, number ISRCTN90011794.
FINDINGS:
Between March 14, 2012, and May 1, 2015, 192 participants were recruited and randomly assigned to irbesartan (n=104) or placebo (n=88), and all were followed for up to 5 years. Median age at recruitment was 18 years (IQR 12-28), 99 (52%) were female, mean blood pressure was 110/65 mm Hg (SDs 16 and 12), and 108 (56%) were taking β blockers. Mean baseline aortic root diameter was 34·4 mm in the irbesartan group (SD 5·8) and placebo group (5·5). The mean rate of aortic root dilatation was 0·53 mm per year (95% CI 0·39 to 0·67) in the irbesartan group compared with 0·74 mm per year (0·60 to 0·89) in the placebo group, with a difference in means of -0·22 mm per year (-0·41 to -0·02, p=0·030). The rate of change in aortic Z score was also reduced by irbesartan (difference in means -0·10 per year, 95% CI -0·19 to -0·01, p=0·035). Irbesartan was well tolerated with no observed differences in rates of serious adverse events.
INTERPRETATION:
Irbesartan is associated with a reduction in the rate of aortic dilatation in children and young adults with Marfan syndrome and could reduce the incidence of aortic complications
p53 protein in odontogenic cysts: increased expression in some odontogenic keratocysts.
AIMS: To assess p53 protein expression in a range of odontogenic cysts arising in the mouth, including those of developmental and inflammatory origin. METHODS: p53 protein was identified using the polyclonal antibody CM-1, together with a standard immunoperoxidase technique. A total of 36 cystic lesions were examined, all of which were histologically benign. RESULTS: Expression of p53 protein was identified within the lining of five of 12 odontogenic keratocysts but was not detected in the other cystic lesions in the series. CONCLUSIONS: This is believed to be the first report that identifies increased expression of p53 protein in benign cystic epithelium. The increased expression of p53 protein in the nucleus is usually associated with malignant disease. These findings are relevant to the management of odontogenic keratocysts which have a tendency to recur, and also to Gorlin Goltz syndrome in which keratocysts and multiple basal cell carcinomas are features