129 research outputs found

    Bayesian inference on major loci in related multigeneration selection lines of laying hens

    Get PDF
    A mixed inheritance model, postulating a polygenic effect and differences between the 3 genotypes of a biallelic locus, was fitted separately to the data of 2 multigeneration selection lines and a control evolving from a common base population. Inferences about the model were drawn from the application of the Gibbs sampler. Body weight at 20 and 40 wk (BW20, BW40) and average egg weight to 40 wk (EW40) were included in the analyses. Significance of differences between posterior means of parameters was established by comparing their 95% highest probability density regions. Significant (P 0.05) differences of posterior means of any parameter could be observed between lines. No significant genotypic or polygenic selection response was found for BW40. On the contrary, both genetic responses were found significant for EW40 in the selected lines, but not in the control. No differences (P > 0.05) between lines could be observed for the derived frequencies of the allele causing the higher trait value and the frequencies of one homozygote and the heterozygote genotypes at the major locus. The detection of a major locus with relatively modest effect confirmed that this type of analysis with data from selected lines was indeed powerfu

    Bayesian Variable Selection to identify QTL affecting a simulated quantitative trait

    Get PDF
    Background Recent developments in genetic technology and methodology enable accurate detection of QTL and estimation of breeding values, even in individuals without phenotypes. The QTL-MAS workshop offers the opportunity to test different methods to perform a genome-wide association study on simulated data with a QTL structure that is unknown beforehand. The simulated data contained 3,220 individuals: 20 sires and 200 dams with 3,000 offspring. All individuals were genotyped, though only 2,000 offspring were phenotyped for a quantitative trait. QTL affecting the simulated quantitative trait were identified and breeding values of individuals without phenotypes were estimated using Bayesian Variable Selection, a multi-locus SNP model in association studies. Results Estimated heritability of the simulated quantitative trait was 0.30 (SD = 0.02). Mean posterior probability of SNP modelled having a large effect ( pˆi) was 0.0066 (95%HPDR: 0.0014-0.0132). Mean posterior probability of variance of second distribution was 0.409 (95%HPDR: 0.286-0.589). The genome-wide association analysis resulted in 14 significant and 43 putative SNP, comprising 7 significant QTL on chromosome 1, 2 and 3 and putative QTL on all chromosomes. Assigning single or multiple QTL to significant SNP was not obvious, especially for SNP in the same region that were more or less in LD. Correlation between the simulated and estimated breeding values of 1,000 offspring without phenotypes was 0.91. Conclusions Bayesian Variable Selection using thousands of SNP was successfully applied to genome-wide association analysis of a simulated dataset with unknown QTL structure. Simulated QTL with Mendelian inheritance were accurately identified, while imprinted and epistatic QTL were only putatively detected. The correlation between simulated and estimated breeding values of offspring without phenotypes was high

    Bird collisions with power lines: prioritizing species and areas by estimating potential population-level impacts

    Get PDF
    Biodiversity ResearchAim: Power lines can represent an important source of bird mortality through collision. The identification of more susceptible species, in terms of expected populationlevel impacts, requires detailed biological and mortality information that is often difficult to obtain. Here, we propose a species prioritization method based on relatively easily accessed information, aimed to identify both species and areas with the potentially highest extinction risk due to collision with power lines. Location: As a case study, we applied this method to the communities of resident breeding birds of Spain and Portugal. Methods: For each considered species, the method takes into account the morphobehavioural susceptibility to collision with power lines, the susceptibility to extinction and the spatial exposure to collision with power lines. Results: Our method highlighted that the most susceptible species were large, longlived and slow‐reproducing birds, often habitat specialists with hazardous behavioural traits (especially flight height and flocking flight), with high spatial exposure to collision risk with power lines and unfavourable conservation status. Based on the distribution ranges of these species, we produced a map of hotspots for extinction risk due to collision of such priority species for each country. These areas should be considered a priority for the implementation of mitigation measures including route planning and wire marking. Main conclusions: Overall, the proposed method can be applied to any bird community in any geographic area of the world where information on power‐line distribution and published information on species traits, distribution and conservation status is available, generating valuable lists of both priority species and areas in which collision risk with power lines can potentially produce local or even global extinctionsinfo:eu-repo/semantics/publishedVersio

    Efficiency of genomic selection using Bayesian multi-marker models for traits selected to reflect a wide range of heritabilities and frequencies of detected quantitative traits loci in mice

    Get PDF
    BACKGROUND: Genomic selection uses dense single nucleotide polymorphisms (SNP) markers to predict breeding values, as compared to conventional evaluations which estimate polygenic effects based on phenotypic records and pedigree information. The objective of this study was to compare polygenic, genomic and combined polygenic-genomic models, including mixture models (labelled according to the percentage of genotyped SNP markers considered to have a substantial effect, ranging from 2.5% to 100%). The data consisted of phenotypes and SNP genotypes (10,946 SNPs) of 2,188 mice. Various growth, behavioural and physiological traits were selected for the analysis to reflect a wide range of heritabilities (0.10 to 0.74) and numbers of detected quantitative traits loci (QTL) (1 to 20) affecting those traits. The analysis included estimation of variance components and cross-validation within and between families. RESULTS: Genomic selection showed a high predictive ability (PA) in comparison to traditional polygenic selection, especially for traits of moderate heritability and when cross-validation was between families. This occurred although the proportion of genomic variance of traits using genomic models was 22 to 33% smaller than using polygenic models. Using a 2.5% mixture genomic model, the proportion of genomic variance was 79% smaller relative to the polygenic model. Although the proportion of variance explained by the markers was reduced further when a smaller number of SNPs was assumed to have a substantial effect on the trait, PA of genomic selection for most traits was little affected. These low mixture percentages resulted in improved estimates of single SNP effects. Genomic models implemented for traits with fewer QTLs showed even lower PA than the polygenic models. CONCLUSIONS: Genomic selection generally performed better than traditional polygenic selection, especially in the context of between family cross-validation. Reducing the number of markers considered to affect the trait did not significantly change PA for most traits, particularly in the case of within family cross-validation, but increased the number of markers found to be associated with QTLs. The underlying number of QTLs affecting the trait has an effect on PA, with a smaller number of QTLs resulting in lower PA using the genomic model compared to the polygenic model

    A two step Bayesian approach for genomic prediction of breeding values

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In genomic models that assign an individual variance to each marker, the contribution of one marker to the posterior distribution of the marker variance is only one degree of freedom (df), which introduces many variance parameters with only little information per variance parameter. A better alternative could be to form clusters of markers with similar effects where markers in a cluster have a common variance. Therefore, the influence of each marker group of size <it>p </it>on the posterior distribution of the marker variances will be <it>p </it>df.</p> <p>Methods</p> <p>The simulated data from the 15<sup>th </sup>QTL-MAS workshop were analyzed such that SNP markers were ranked based on their effects and markers with similar estimated effects were grouped together. In step 1, all markers with minor allele frequency more than 0.01 were included in a SNP-BLUP prediction model. In step 2, markers were ranked based on their estimated variance on the trait in step 1 and each 150 markers were assigned to one group with a common variance. In further analyses, subsets of 1500 and 450 markers with largest effects in step 2 were kept in the prediction model.</p> <p>Results</p> <p>Grouping markers outperformed SNP-BLUP model in terms of accuracy of predicted breeding values. However, the accuracies of predicted breeding values were lower than Bayesian methods with marker specific variances.</p> <p>Conclusions</p> <p>Grouping markers is less flexible than allowing each marker to have a specific marker variance but, by grouping, the power to estimate marker variances increases. A prior knowledge of the genetic architecture of the trait is necessary for clustering markers and appropriate prior parameterization.</p

    LIFE Adaptamed Layman’s Report. Action E13. LIFE14 CCA/ES/000612

    Get PDF
    Aguas de Font Vella y Lanjaró

    Genomic Prediction in Tetraploid Ryegrass Using Allele Frequencies Based on Genotyping by Sequencing

    Get PDF
    Perennial ryegrass is an outbreeding forage species and is one of the most widely used forage grasses in temperate regions. The aim of this study was to investigate the possibility of implementing genomic prediction in tetraploid perennial ryegrass, to study the effects of different sequencing depth when using genotyping-by-sequencing (GBS), and to determine optimal number of single-nucleotide polymorphism (SNP) markers and sequencing depth for GBS data when applied in tetraploids. A total of 1,515 F2 tetraploid ryegrass families were included in the study and phenotypes and genotypes were scored on family-pools. The traits considered were dry matter yield (DM), rust resistance (RUST), and heading date (HD). The genomic information was obtained in the form of allele frequencies of pooled family samples using GBS. Different SNP filtering strategies were designed. The strategies included filtering out SNPs having low average depth (FILTLOW), having high average depth (FILTHIGH), and having both low average and high average depth (FILTBOTH). In addition, SNPs were kept randomly with different data sizes (RAN). The accuracy of genomic prediction was evaluated by using a “leave single F2 family out” cross validation scheme, and the predictive ability and bias were assessed by correlating phenotypes corrected for fixed effects with predicted additive breeding values. Among all the filtering scenarios, the highest estimates for genomic heritability of family means were 0.45, 0.74, and 0.73 for DM, HD and RUST, respectively. The predictive ability generally increased as the number of SNPs included in the analysis increased. The highest predictive ability for DM was 0.34 (137,191 SNPs having average depth higher than 10), for HD was 0.77 (185,297 SNPs having average depth lower than 60), and for RUST was 0.55 (188,832 SNPs having average depth higher than 1). Genomic prediction can help to optimize the breeding of tetraploid ryegrass. GBS data including about 80–100 K SNPs are needed for accurate prediction of additive breeding values in tetraploid ryegrass. Using only SNPs with sequencing depth between 10 and 20 gave highest predictive ability, and showed the potential to obtain accurate prediction from medium-low coverage GBS in tetraploids

    Deregressed EBV as the response variable yield more reliable genomic predictions than traditional EBV in pure-bred pigs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genomic selection can be implemented by a multi-step procedure, which requires a response variable and a statistical method. For pure-bred pigs, it was hypothesised that deregressed estimated breeding values (EBV) with the parent average removed as the response variable generate higher reliabilities of genomic breeding values than EBV, and that the normal, thick-tailed and mixture-distribution models yield similar reliabilities.</p> <p>Methods</p> <p>Reliabilities of genomic breeding values were estimated with EBV and deregressed EBV as response variables and under the three statistical methods, genomic BLUP, Bayesian Lasso and MIXTURE. The methods were examined by splitting data into a reference data set of 1375 genotyped animals that were performance tested before October 2008, and 536 genotyped validation animals that were performance tested after October 2008. The traits examined were daily gain and feed conversion ratio.</p> <p>Results</p> <p>Using deregressed EBV as the response variable yielded 18 to 39% higher reliabilities of the genomic breeding values than using EBV as the response variable. For daily gain, the increase in reliability due to deregression was significant and approximately 35%, whereas for feed conversion ratio it ranged between 18 and 39% and was significant only when MIXTURE was used. Genomic BLUP, Bayesian Lasso and MIXTURE had similar reliabilities.</p> <p>Conclusions</p> <p>Deregressed EBV is the preferred response variable, whereas the choice of statistical method is less critical for pure-bred pigs. The increase of 18 to 39% in reliability is worthwhile, since the reliabilities of the genomic breeding values directly affect the returns from genomic selection.</p
    corecore