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and crown rust resistance. A total of 728 K single nucleo-
tide polymorphism (SNP) variants were available and were 
divided in groups of different sequencing depths. GRMs 
based on GBS data showed diagonal values biased upwards 
at low sequencing depth, while off-diagonals were lit-
tle affected by the sequencing depth. Using variants with 
high sequencing depth, genomic heritability for crown rust 
resistance was 0.33, and for heading date 0.22, and these 
genomic heritabilities were biased downwards when using 
variants with lower sequencing depth. Broad sense herit-
abilities were 0.61 and 0.66, respectively. Underestimation 
of genomic heritability at lower sequencing depth was con-
firmed with simulated data. We conclude that it is feasible 
to use GBS to describe relationships between family-pools 
and to estimate genomic heritability directly at the level 
of F2 family-pool samples, but estimates are biased at low 
sequencing depth.

Introduction

Use of genomic data offers new possibilities to estimate 
genomic heritabilities by using relationships computed 
based on genomic information. In a human height study, 
Yang et al. (2010) estimated such a genomic heritability 
based on single nucleotide polymorphisms (SNPs) without 
the need for pedigree information. This can also be interest-
ing for breeding material that is not handled as individuals, 
but in so-called “population-based” breeding systems that 
operate at the level of (multi-parent) family-pools. In these 
systems, family-pools are the basic unit for phenotyping, 
for development into commercial varieties, and for devel-
opment of new “progeny” family-pools. Classical genetic 
concepts like pedigrees, genetic relationships and herit-
ability cannot be used because they have individuals as the 
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focal unit. Use of genomic information, however, would 
allow computing relationships directly at the family-pool 
level and to develop a genomic-based concept of heritabil-
ity at the family-pool level, provided that a suitable geno-
typing for family-pool samples would be available.

An example of a species using “population based” 
breeding using family-pools is perennial ryegrass (Lolium 
perenne L.). Lolium Perenne L. belongs to the group of 
inter-fertile and largely outbred grass species (Wilkins 
1991). Individual plants are of limited interest for breed-
ing: as an outbreeder, individuals cannot be propagated into 
commercial varieties, and relevant phenotypes are scored in 
field plots were individuals cannot be distinguished (Con-
nolly 2001). Lolium Perenne is the principal forage grass 
of N. Europe and is also grown widely in temperate climate 
zones worldwide for feeding livestock and/or amenity grass 
in sport grounds and residential areas. Generally, forage 
grasses have a relatively short history of formal breeding, 
which implies great variation within and among popula-
tions, and significant potential for genetic improvement 
(Conaghan and Casler 2011).

DNA sequence yields an unrivalled source of genetic 
information. Recent developments in next-generation 
sequencing (NGS) technologies have resulted in a con-
tinuous improvement in the throughput, speed, and cost 
to obtain genome sequences. These advancements have 
improved the potential to detect genetic variation that can 
be traced by a set of dense markers covering the whole 
genome. A robust genotyping approach known as geno-
typing-by-sequencing (GBS) developed by Elshire et al. 
(2011) reduces genome complexity by using restriction 
enzymes. GBS approaches using methylation sensitive 
restriction enzymes such as ApeKI can be used to target the 
low copy fraction of the genome (Elshire et al. 2011). These 
approaches can also be used in breeding populations of out-
bred heterogeneous varieties by estimating genome-wide 
allele frequency profiles in pooled samples (Byrne et al. 
2013). Until recently, use of GBS has only been reported 
for studies where sequences were obtained on individuals 
(Peterson et al. 2014). To genotype family pools, GBS pro-
vides a direct way to measure allele frequencies at bi-allelic 
SNPs. Recently, it has also been shown that GBS data can 
be used directly without calling genotypes, which allows 
to use this technology for measurements of F2 family 
pools (Ashraf et al. 2014). Analysis of genomic variation 
is an essential part of plant genetic and crop improvement. 
Despite large genetic variability in perennial ryegrass, only 
a few investigations have reported variance components for 
traits measured in ryegrass (Conaghan and Casler 2011; 
Yamada et al. 2004), and are often based on phenotypes 
measured on individuals instead of pools. To date, no stud-
ies have reported genomic heritabilities in breeding popula-
tions of perennial ryegrass using GBS data.

Use of GBS also poses statistical challenges, for instance, 
genotyping error at low sequencing depth and missing val-
ues (Merrill 2013; Poland and Rife 2012). Sequencing depth 
is an important experimental variable in GBS because it 
determines the accuracy of genotype estimates or pool allele 
frequency estimates. In principle, increasing the sequencing 
depth will improve accuracy of the genotypes (Sims et al. 
2014), but if total sequencing budget is fixed this implies 
reducing the number of samples which in turn reduces 
the power in a Genome Wide Association Study (GWAS) 
(Ashraf et al. 2014). Several studies have been conducted to 
investigate the effect of sequencing depth in GWAS (Garner 
2011; Sims et al. 2014), but the effect of sequencing depth 
in relation to the estimation of genomic heritability has not 
yet been addressed. Ashraf et al. (2014) showed bias in 
allele-effect estimates when sequencing depth is low, and it 
is expected that bias also arises in genomic heritability esti-
mates when using GBS data with low sequencing depth.

Many studies have investigated the importance of mark-
ers density in genomic selection (GS) of animal and plants 
(Habier et al. 2009; Heffner et al. 2009). In human height, 
Yang et al. (2010) found that a large proportion of genomic 
heritability can be traced by using a relatively small num-
ber of SNP markers. Similarly in a dairy cattle study, Jensen 
et al. (2012) showed that relatively large proportion of addi-
tive genetic variance may be traced by a limited number of 
markers in cases with a strong family structure. Use of SNPs 
from GBS data is under investigation in many crop species 
(Lin et al. 2014), but mainly in the context of genomic predic-
tion. Effect of marker - density on the estimates of genomic 
heritability when using GBS data has not been investigated in 
previous studies on perennial ryegrass or other species.

The main objective of this study was to demonstrate fea-
sibility of computing relationships directly at the level of 
family-pools from genotyping-by-sequencing. This allows 
taking family-pools as a unit of measurement with a geno-
type and a phenotype, and to compute heritabilities at the 
level of family-pool phenotypes as they arise in breeding 
populations of perennial ryegrass. To validate this approach, 
a large data set from a single year and single location is used 
and procedures are demonstrated for crown rust resistance 
and heading date as example traits. We also determine the 
effects of different sequencing depths and marker density 
on the estimates of genomic heritability and the results from 
experimental data were verified using stochastic simulation.

Materials and methods

Phenotypic data

The origin of the breeding material used in the current 
study has been described in detail by Fè et al. (2015), but 
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for the current study families were re-phenotyped in a sin-
gle year and single location at DLF Trifolium A/S Den-
mark. In a field trial 995 plots of F2 families were estab-
lished during the autumn 2010, with two replicates per 
family.

Phenotypic data was scored at the plot level for each F2 
family. Crown rust resistance was scored once during the 
growth season and measured by visual scoring of the field-
plot on a 0 (maximum infection) to 9 (no infection) scale 
during the period of maximum infection. Heading date was 
also scored on the field plot and was defined as the day on 
which plants start showing on average at least one spikelet 
per tiller. It was expressed in days after 1st of May.

Genomic data

Sequence data was obtained by genotyping-by-sequenc-
ing (GBS) of bulk samples of the families. Sampling and 
library preparation were carried out according to Byrne 
et al. (2013), and Elshire et al. (2011) and was based on a 
bulk sample of leafs from 200 to 500 plants per family. We 
prepared 16 libraries, each with up to 64 F2 families and 
sequenced each library on seven lanes of on an Illumina 
HiSeq 2000 (single-end). Top-up libraries were prepared 
to bulk up output for F2 families competing poorly within 
a library. A total of 995 F2 families were genotyped using 
GBS and the average number of reads obtained per F2 
population after basic data filtering (see supplemental note 
1) was 20.5 million. Data for each F2 family was aligned 
against a draft sequence assembly and 1,020,065 SNPs were 
identified (see supplemental note 1) with sequencing depth 
at a SNP ranging from 0 to 250 (upper limit) reads per fam-
ily. Figure S1 (supplementary material) shows the average 
frequency and average sequencing depth of SNP markers, 
showing that SNPs with average depth more than 60 have 
a different range in allele frequencies, and allele frequen-
cies often close to 1. Few SNP positions had greater than 
60 reads and we suspect that these reads may be originating 
from plastid genomes or highly repetitive regions not cap-
tured in the draft assembly. We therefore decided to discard 
all SNPs with average depth more than 60. Further, SNPs 
with allele frequencies less than 0.02 and greater than 0.98 
were removed. After this filtering on depth and frequency, 
728,359 SNPs were available for analysis. SNPs were 
split into five different subgroups based on average SNP 
sequencing depth (0–10, 10–20, 20–30, 30–40 and 40–60), 
with numbers of SNPs in each group as shown in Table 1. 
These groups of SNPs were the basis for constructing GRM 
based on SNPs with different sequencing depth. Five of the 
families showed very high genotype missing rate (>50 %) 
and were removed, leaving 990 families in the final data set.

Genomic relationship matrices (GRM) using different 
sequencing depth

To investigate the effect of sequencing depth on genomic 
heritability estimates, we constructed GRMs based on 
SNPs with different sequencing depth (0–10, 10–20, 
20–30, 30–40 and 40–60). There are several versions of 
GRMs in various studies, e.g., Legarra and Misztal (2008) 
and Forni et al. (2011), but here we follow the ‘method 1’ 
from VanRaden (2008) with modifications to accommo-
date for F2 family pools instead of single individuals. We 
also added the correction for missing rate from VanRaden 
(2008, p 4420). Consider a matrix comprised of allele fre-
quency estimates from GBS data with SNPs in rows and 
samples in columns, Xij being the allele frequency at SNP i 
in family j, and M is the matrix centered by SNP mean fre-
quencies, M =

{

Mij

}

=
{

Xij − X̄i

}

. Missing SNP data is 
substituted by the mean SNP frequency. This amounts to a 
mean-imputation for missing genotypes. Then the G-matrix 
is:

Here K is taken as 0.25 
∑

X̄i

(

1− X̄i

)

, which is the sum 
of expected SNP variances when using frequencies in fami-
lies (Ashraf et al. 2014) and when inbreeding is absent. 
Because the F2 families derive from F1 × F1 full sib inter-
crosses, the F2 families are expected to be 25 % inbred and 
to have G diagonals of 1.25 after this scaling. The inverse 
of G was computed by first computing the eigen-decompo-
sition G = EvΛE′

v. Typically a G-matrix is singular, with 
one last zero eigenvalue due to the centering procedure. 
The last (close to) zero eigenvalue from the G-matrix was 
increased to a value just below the one-by-last eigenvalue, 
and subsequently the inverse of G was computed as:

These computations were performed in R version 3.0.2 
(R development Core Team 2014).

G =
M ′M

K

Ginv = E′
vΛ

−1Ev

Table 1  Number, mean diagonal, mean off-diagonal and their stand-
ard errors (in parentheses) for Genomic Relationship Matrices con-
structed from SNPs’ subgroups based on different sequencing depths

Sequencing depth # SNPs Diagonal Off-diagonal

0–10 164,572 2.666 (0.013) −0.0026 (0.000080)

10–20 337,011 2.409 (0.014) −0.0024 (0.000091)

20–30 131,592 1.977 (0.013) −0.0020 (0.000091)

30–40 60,147 1.640 (0.012) −0.0016 (0.000084)

40–60 35,037 1.296 (0.011) −0.0013 (0.000068)
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GRMs at lower and equal SNP densities 
within sequencing depth

Dividing the SNPs in groups with different sequencing 
depth yielded different group sizes. To compare results 
using constant number of SNPs in each group, and to study 
the effect of using lower numbers of SNPs within sequenc-
ing depth random sub-samples were made within each 
group of SNPs of 5, 10, 15, 20, 25, 30 and 35 K SNPs. The 
size 35 K corresponds to a number of SNPs just below the 
size of the smallest group. Again GRMs were constructed 
using these groups of SNPs.

REML variance component estimation

Phenotypic data was analyzed by REstricted Maximum 
Likelihood (REML) using the average information (AI-
REML) algorithm in the DMU multivariate mixed model 
package (Madsen and Jensen 2000). The raw phenotypic 
data was analyzed which includes two replicates (plots) per 
family. The data were analyzed using the model:

where y is a vector of phenotypic observations; X is a 
design matrix for trials, which are blocks of 36 plots in the 
field; t is a vector of trial effects; Z is a design matrix relat-
ing observations to families with two plots for most fami-
lies; g is a vector of genomic breeding values for families 
with g ~ N (0, Gσg

2), with σg
2 being the genomic variance 

and G is the genomic relationship matrix; f is a vector of 
remaining uncorrelated family effects with f ~ N (0, Iσf

2), 
where σf

2 is the variance due to uncorrelated family effects, 
W is a design matrix relating families to the parent-popula-
tions from which their parents were sampled, p is a vector 
of random effects of parent-populations with p ~ N (0, Iσp

2) 
where σp

2 is the variance explained by parent populations, 
and e is vector of random residuals e ~ N (0, Iσe

2), with σe
2 

corresponding to the variance of residuals. Note that both g 
and f are family effects, with g correlated between families 
according to estimated genomic relationships, and f uncor-
related between families. The uncorrelated family effect is 
included to capture any covariance between family repeats 
that is not captured by the genomic relationship matrix; this 
covariance could include non-additive genetic effects and 
specific family by environment interaction effects. Total 
explained variance in the above model was obtained as:

Total explained variance is evaluated from this expres-
sion by using the average diagonal value of the used GRM 
for G, and using the value of 2 for WW′ because in the 

(1)y = Xt + Zg + Zf + Wp + e

var(y) = Gσ 2

g + Iσ 2

f +WW
′

σ 2

p + Iσ 2

e

data considered every family had two parents from two 
parent-populations.

From the variance components, two narrow-sense herit-
abilities and broad sense heritability were calculated as:

where h2G is a narrow sense heritability based on genomic 
relationships only, h2G+PP is a narrow sense heritability 
based on genomic and parent-population variance, and H2 
is broad sense heritability including all variance component 
related to families.

Simulation studies

To verify the principle and possible biases of estimating 
genomic heritabilities using family-pool samples a simula-
tion study was performed creating artificial data sets with 
500 families and 1000 SNP markers. The SNP markers 
were considered independent, implying that ancestral Link-
age Disequilibrium between the markers is ignored. For 
each SNP marker a population frequency was drawn from 
a uniform distribution between 0.05 and 0.95. The family-
pools considered were F2 pools from two diploid parents. 
As derived in Ashraf et al. (2014) the “genotype” of such a 
pool can be considered as a tetraploid genotype, with fre-
quencies within the pools in quarters, and this was used to 
directly generate the true pool-genotypes. Subsequently, 
the effect of using GBS for genotyping the pool sample 
was simulated, by considering that each pool-genotype was 
estimated by obtaining 5, 15 or 25 sequence-reads on each 
pool. The allele-counts in the sequence-reads then follow a 
binomial distribution of size 5, 15, or 25 with probability 
the true pool genotype; the GBS estimate of the pool gen-
otype is then the proportion of successes in this binomial 
sampling. Phenotypes were generated by considering 5, 10, 
50, 100, 500 and 1000 of the SNP markers (of 1000 total) 
to be a QTL, and QTL effects were drawn from a stand-
ard Normal distribution. The simulated total genetic values 
were standardized to have a variance of 1. Data sets with 
one replicate per family were generated according to the 
model:

h2G = σ 2
g

/

var(y)

h2G+PP =

(

σ 2
g + 2σ 2

p

)

/

var(y)

H2
=

(

Gσ 2

g + 2σ 2

p + σ 2

f

)/

var(y)

yi = µ+

Nq
∑

k=1

qkiak + ei
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 and data sets with two replicates per family were generated 
according to the model:

 where yi is a single phenotype on family i, yij are repeated 
phenotypes for j = 1,2 on family i, μ is an overall mean, 
Nq is the number of QTL, qki is the genotype frequency at 
QTL k for family i, ak is effect of QTL k, and ei and eij are 
model residuals. For analysis of these simulated data sets 
GRM’s were made using all simulated markers following 
the same procedures as for the empirical data. For each 
presented scenario 50 data sets were generated and results 
were averaged over replicated data sets. All analyses fol-
lowed the same REML procedures as for the empirical data 
analyses, except for leaving out the effect of parent-popula-
tions, and obtaining narrow sense genomic heritability 

(

h2G
)

 
for the scenario with one replicates per family, and narrow 
sense genomic and broad sense heritability (H2) for the sce-
nario with two replicates per family.

Results

G‑matrices at different sequencing depth

Table 1 shows the impact of sequencing depth on diagonal 
and off-diagonal elements of the GRMs. The matrices were 
scaled to have expected diagonals of 1.25 (reflecting 25 % 
inbreeding) for these F2 families, and with high sequenc-
ing depth diagonals of GRMs approach the expected value. 
However, at low sequencing depth, diagonal values are 
much higher than the expected value; at depth 0–10 the aver-
age diagonal value was 2.666. Off-diagonals, in contrast, 
were hardly affected by sequencing depth. Box plots of the 
diagonal and off-diagonal values in the genomic relationship 
matrices with different sequencing depth are shown in Fig. 1.

yij = µ+ fi +

Nq
∑

k=1

qkiak + eij

Genomic heritabilities

Table 2 presents results of the REML analyses showing 
three heritabilities for two traits, using GRMs based on 
SNPs with different sequencing depth. The broad sense 
heritabilities are virtually constant for crown rust resist-
ance and very similar for heading date across sequencing 
depth, showing that the total variance explained by fami-
lies is not affected by sequencing depth. However, results 
show that sequencing depth has a significant impact on 
the amount of variance that is captured by the genomic 
component 

(

h2G
)

; at low sequencing depth h2G captures a 
smaller portion of the total family variance. The effect of 
parent-population only partly compensates for this, and 
total narrow sense heritability based on the genomic and 
parent-population components h2G+PP is still lower at low 
sequencing depth.

Genomic heritabilities with smaller and equal SNP sets

The results in Table 2 are based on GRM with different 
number of SNPs in each level of sequencing depth. To 
compare results at smaller and equal SNP density, herit-
abilities were computed using GRMs with 5 to 35 K SNPs 
for the SNP groups with sequencing depth 0–10 (low), 
20–30 (medium) and 40–60 (high). The smallest group of 
sequencing depth 40–60 had just over 35 K SNPs, so it 
was not possible to compare the different SNP groups at 
SNP numbers above 35 K. Table 3 present the narrow sense 
heritabilities from the genomic component 

(

h2G
)

 for these 
different SNP sets, as well as the estimates obtained from 
using all SNPs in Table 2. Results show a tendency that 
use of smaller sets of SNPs has smaller effect in the high 
sequencing depth SNPs, e.g., using 15 K SNPs estimates 
in the high sequencing depth group are still close to those 
using all SNPs, while in the medium and lower sequencing-
depth groups heritabilities are already lower using 35 K 
SNPs compared to using all SNPs.

Fig. 1  Box plots for diagonal 
values (left panel) and off-
diagonal values (right panel) of 
genomic relationship matrices 
computed from SNPs with dif-
ferent sequencing depths
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Simulation results

A simulation study was conducted to validate the estima-
tion of genomic heritability when using GBS data with low 
depth. The results (Table 4) show that genomic heritability 
was under-estimated by more than half at depth 5 with esti-
mated heritabilities around 0.10, and still shows some bias 
at high depth with estimates around 0.20, while the true 
value simulated was 0.25. When replicated phenotypes are 
available, the broad sense heritabilities were correctly esti-
mated, but, as the narrow sense heritabilities were underes-
timated, this implies that the broad sense component incor-
rectly captures the part of additive variance that was not 

captured by the narrow sense heritability. With one replicate 
the environmental variance captures the part not explained 
by the genomic component at low depth (details not shown). 
Table 4 shows that there is no effect of the number of QTL 
affecting the trait in these simulated data sets.

Discussion

In this study we present estimates of genomic heritabili-
ties for two traits measured in pooled samples of families 
of perennial ryegrass based on pool-allele frequencies at 
variant positions obtained by genotyping-by-sequencing 

Table 2  Estimated narrow 
sense heritability based on 
genomic relationships (h2

G
),  

narrow sense heritability based 
on genomic relationships and 
parent population (h2

G+PP
) and 

broad sense heritability (H2) 
for crown rust resistance and 
heading date using pooled 
family data and SNP sets with 
different sequencing depths

Sequencing depth Crown rust resistance Heading date

h
2

G
h
2

G+PP
H2

h
2

G
h
2

G+PP
H2

0−10 0.17 (0.057) 0.22 (0.051) 0.60 (0.096) 0.07 (0.030) 0.51 (0.051) 0.69 (0.068)

10−20 0.19 (0.057) 0.23 (0.050) 0.60 (0.081) 0.09 (0.033) 0.51 (0.050) 0.68 (0.066)

20−30 0.25 (0.061) 0.27 (0.053) 0.61 (0.060) 0.11 (0.037) 0.51 (0.050) 0.68 (0.057)

30−40 0.23 (0.064) 0.26 (0.057) 0.60 (0.045) 0.17 (0.043) 0.52 (0.048) 0.66 (0.050)

40−60 0.33 (0.079) 0.35 (0.070) 0.61 (0.032) 0.22 (0.052) 0.58 (0.050) 0.66 (0.042)

Table 3  Estimated narrow 
sense heritabilities from 
genomic variance (h2

G
) for 

crown rust resistance and 
heading date, using genomic 
relationship matrices with 
different numbers of SNPs and 
sequence depths

Standard errors of heritabilities are in parentheses

# SNPs Crown rust resistance Heading date

Depth (0–10) Depth (20–30) Depth (40–60) Depth (0–10) Depth (20–30) Depth (40–60)

5 K 0.04 (0.031) 0.12 (0.039) 0.17 (0.056) 0.02 (0.014) 0.03 (0.019) 0.08 (0.032)

10 K 0.04 (0.035) 0.12 (0.045) 0.21 (0.066) 0.03 (0.019) 0.08 (0.026) 0.11 (0.037)

15 K 0.07 (0.039) 0.13 (0.050) 0.31 (0.071) 0.01 (0.018) 0.08 (0.030) 0.19 (0.047)

20 K 0.11 (0.044) 0.19 (0.052) 0.26 (0.074) 0.02 (0.021) 0.10 (0.032) 0.18 (0.047)

25 K 0.11 (0.047) 0.19 (0.055) 0.30 (0.076) 0.03 (0.023) 0.08 (0.031) 0.21 (0.049)

30 K 0.11 (0.047) 0.21 (0.056) 0.34 (0.077) 0.05 (0.025) 0.08 (0.031) 0.21 (0.051)

35 K 0.13 (0.048) 0.18 (0.056) 0.33 (0.078) 0.06 (0.026) 0.08 (0.032) 0.22 (0.052)

All 0.18 (0.057) 0.25 (0.061) 0.33 (0.079) 0.07 (0.030) 0.11 (0.037) 0.22 (0.052)

Table 4  Estimated narrow sense heritability (h2) in simulated data 
with one replicate per family (1rep), and narrow sense and broad 
sense heritability (H2) with two replicates per family (2rep) with 
different numbers of QTL and different sequencing depths. Each 

scenario is based on 500 families and 1000 SNP markers and was 
repeated 50 times; standard error from the simulated replicates in 
parentheses. The true simulated narrow sense heritability was 0.25 
and broad sense heritability 0.375

#QTL Depth 5 Depth 15 Depth 25

1rep (h2) 2rep (h2) 2rep (H2) 1rep (h2) 2rep (h2) 2rep (H2) 1rep (h2) 2rep (h2) 2rep (H2)

5 0.09 (0.008) 0.09 (0.006) 0.37 (0.006) 0.17 (0.011) 0.16 (0.008) 0.38 (0.005) 0.18 (0.012) 0.19 (0.009) 0.38 (0.006)

10 0.08 (0.008) 0.10 (0.006) 0.38 (0.005) 0.18 (0.009) 0.17 (0.008) 0.37 (0.006) 0.19 (0.011) 0.18 (0.009) 0.38 (0.006)

50 0.10 (0.006) 0.09 (0.004) 0.36 (0.005) 0.18 (0.010) 0.17 (0.007) 0.38 (0.005) 0.19 (0.011) 0.21 (0.008) 0.38 (0.005)

200 0.10 (0.007) 0.10 (0.006) 0.37 (0.004) 0.16 (0.010) 0.17 (0.008) 0.38 (0.005) 0.20 (0.013) 0.19 (0.008) 0.37 (0.005)

500 0.10 (0.009) 0.09 (0.005) 0.37 (0.006) 0.17 (0.012) 0.19 (0.006) 0.38 (0.005) 0.21 (0.011) 0.19 (0.007) 0.37 (0.005)

1000 0.10 (0.007) 0.10 (0.006) 0.37 (0.005) 0.18 (0.009) 0.17 (0.005) 0.38 (0.006) 0.21 (0.010) 0.19 (0.007) 0.37 (0.005)
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(GBS). This introduces a new approach that defines herit-
abilities not in individuals, but at the level of pool-samples 
and uses GBS to compute genomic relationships between 
pools. Very few studies have been published with herit-
abilities in ryegrass (Conaghan and Casler 2011; Elgersma 
1990; Yamada et al. 2004), and largely these studies have 
quantified heritabilities based on pedigree information and 
phenotypes measured on individual (spaced) plants. For 
practical breeding, however, spaced individuals are of lim-
ited interest, because grasses are used in practice in densely 
sown swards. This is the first study that presents genomic 
heritabilities for traits measured on such swards, estab-
lished as family-plots, and that uses GBS data to charac-
terize relationships directly at the level of pooled families. 
To the best of our knowledge, the approach that we present 
here is novel. In order to validate the use of GBS and the 
computation of relationships between family-pools a large 
data set from a single year and single location was used; 
this implies that the heritabilities presented are ‘best case’ 
heritabilities that may include genotype-by-environment 
interactions.

Simulation studies indicated that genomic heritabilities 
are under-estimated at lower read depths (Table 4), and this 
was verified using empirical evidence (Table 2). Therefore, 
the most accurate estimates of narrow sense genomic herit-
ability were with higher sequencing depth, and were 0.33 
and 0.22 for crown rust resistance and heading date respec-
tively. Variability in the size of heritability estimates was 
found when this study was compared to previous studies. 
Rust resistance is a quite variable trait in terms of classi-
cal heritability (Ravel and Charmet 1996); this diversity 
could be due to interaction with some other plant diseases 
or different experimental environments. In a recent study, 
Fè et al. (2015) presented family-based analysis of 1453 
ryegrass F2 families produced in multiple years and loca-
tions in Europe, and promising broad sense heritabilities 
were determined for various traits measured. In the case of 
rust resistance, they found 0.26 and 0.34 broad sense herit-
abilities within and across parental populations, which are 
lower than those found here. Generally, heading date is a 
highly heritable trait in several plant species. The estimates 
of genomic heritability for heading date presented in Fè 
et al. (2015) were very similar to our results.

Results summarized in Table 1 and Fig. 1, revealed that 
diagonals of GRMs were inflated when using SNPs with 
low depth. In contrast off-diagonals are little affected by 
sequencing depth. The higher diagonal values can be inter-
preted as (falsely) showing a higher inbreeding level in 
the samples, which is consistent with low-depth sequenc-
ing falsely obtaining homozygote genotypes, which are in 
reality heterozygote. However, pool samples have a larger 
range of true pool-frequencies, e.g., in biparental pools in 
quarters, and also miss-genotyping between heterozygotes 

contributes to the inflated GRM diagonals, as is shown by 
biases still being present at sequencing depth 25. Simula-
tion results (Table 4) revealed that estimates of genomic 
heritability are biased downwards at lower sequencing 
depth. It has already been shown that, when using GBS 
data, estimates of allele effects in a Genome Wide Asso-
ciation Study (GWAS) are subject to bias because of low 
sequencing depth (Ashraf et al. 2014). This bias leads to an 
underestimation of the allele substitution effect. Measure-
ment error on covariates is well known to cause underes-
timation of regression coefficients (Chesher 1991) in least 
squares or fixed effect models. Our simulation results indi-
cate that also variance components in random effect models 
are under-estimated, and the amount of under-estimation 
corresponds to the square of the bias terms on allele effects 
given by Ashraf et al. (2014). This is consistent because 
genomic variances relate to the square of allele effects. 
Ashraf et al. (2014) also considered the effect of sequenc-
ing errors in the framework of GWAS, and showed that 
sequencing error further biased downwards allele effect 
estimates. When estimating genomic heritabilities the same 
effect would be expected that sequencing error gives an 
additional downward bias in genomic heritability estimates.

To determine if the effects of sequencing depth that we 
observe (Table 2) are influenced by different SNP num-
bers in each group, we sampled equal numbers of SNPs 
within each sequencing depth (Table 3). This shows ten-
dencies that reducing SNP number within low sequencing 
depth SNPs has stronger effect, which adds an additional 
downward bias when using low sequencing depth. How-
ever, the effects of reducing SNP numbers could only be 
studied up to 35 K SNPs, which was the size of the small-
est SNP group. In the main analyses, the low sequencing 
depth groups had all well over 100 K SNPs, and therefore 
we believe that our main results are not much influenced 
by differences in SNP number between the SNP groups. 
In other contexts it has also been shown that variance 
explained by SNPs depends on the number of SNPs used 
(e.g., Yang et al. 2010, Jensen et al. 2012). In the context 
of using GBS these results suggest that the combination of 
low sequencing depth and low number of SNPs may need 
to be avoided.

The traits studied here, crown rust resistance and head-
ing date, are commonly assumed to have relatively simpler 
genetic architectures. Our simulation results did not show 
differences between genetic architectures based on 5 to 
1000 QTL, which suggests that our results can be general-
ized to also apply to more polygenic traits.
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