1,403 research outputs found

    TDC Chip and Readout Driver Developments for COMPASS and LHC-Experiments

    Get PDF
    A new TDC-chip is under development for the COMPASS experiment at CERN. The ASIC, which exploits the 0.6 micrometer CMOS sea-of-gate technology, will allow high resolution time measurements with digitization of 75 ps, and an unprecedented degree of flexibility accompanied by high rate capability and low power consumption. Preliminary specifications of this new TDC chip are presented. Furthermore a FPGA based readout-driver and buffer-module as an interface between the front-end of the COMPASS detector systems and an optical S-LINK is in development. The same module serves also as remote fan-out for the COMPASS trigger distribution and time synchronization system. This readout-driver monitors the trigger and data flow to and from front-ends. In addition, a specific data buffer structure and sophisticated data flow control is used to pursue local pre-event building. At start-up the module controls all necessary front-end initializations.Comment: 5 pages, 4 figure

    F1: An Eight Channel Time-to-Digital Converter Chip for High Rate Experiments

    Get PDF
    A new TDC chip has been developed for the COMPASS experiment at CERN. The resulting ASIC offers an unprecedented degree of flexibility and functionality. Its capability to handle highest hit and trigger input rates as well as its low power consumption makes it an ideal tool for future collider and fixed target experiments. First front-end boards equipped with the F1 chip have been used recently at testbeam experiments at CERN. A functional description and specification for this new TDC chip is presented.A new TDC chip has been developed for the COMPASS experiment at CERN. The resulting ASIC offers an unprecedented degree of flexibility and functionality. Its capability to handle highest hit and trigger input rates as well as its low power consumption makes it an ideal tool for future collider and fixed target experiments. First front-end boards equipped with the F1 chip have been used recently at testbeam experiments at CERN. A functional description and specification for this new TDC chip is presented

    The X-ray Telescope of CAST

    Get PDF
    The Cern Axion Solar Telescope (CAST) is in operation and taking data since 2003. The main objective of the CAST experiment is to search for a hypothetical pseudoscalar boson, the axion, which might be produced in the core of the sun. The basic physics process CAST is based on is the time inverted Primakoff effect, by which an axion can be converted into a detectable photon in an external electromagnetic field. The resulting X-ray photons are expected to be thermally distributed between 1 and 7 keV. The most sensitive detector system of CAST is a pn-CCD detector combined with a Wolter I type X-ray mirror system. With the X-ray telescope of CAST a background reduction of more than 2 orders off magnitude is achieved, such that for the first time the axion photon coupling constant g_agg can be probed beyond the best astrophysical constraints g_agg < 1 x 10^-10 GeV^-1.Comment: 19 pages, 25 figures and images, replaced by the revised version accepted for publication in New Journal of Physic

    CAST constraints on the axion-electron coupling

    Full text link
    In non-hadronic axion models, which have a tree-level axion-electron interaction, the Sun produces a strong axion flux by bremsstrahlung, Compton scattering, and axio-recombination, the "BCA processes." Based on a new calculation of this flux, including for the first time axio-recombination, we derive limits on the axion-electron Yukawa coupling g_ae and axion-photon interaction strength g_ag using the CAST phase-I data (vacuum phase). For m_a < 10 meV/c2 we find g_ag x g_ae< 8.1 x 10^-23 GeV^-1 at 95% CL. We stress that a next-generation axion helioscope such as the proposed IAXO could push this sensitivity into a range beyond stellar energy-loss limits and test the hypothesis that white-dwarf cooling is dominated by axion emission

    Solar axion search with the CAST experiment

    Get PDF
    The CAST (CERN Axion Solar Telescope) experiment is searching for solar axions by their conversion into photons inside the magnet pipe of an LHC dipole. The analysis of the data recorded during the first phase of the experiment with vacuum in the magnet pipes has resulted in the most restrictive experimental limit on the coupling constant of axions to photons. In the second phase, CAST is operating with a buffer gas inside the magnet pipes in order to extent the sensitivity of the experiment to higher axion masses. We will present the first results on the 4He^{4}{\rm He} data taking as well as the system upgrades that have been operated in the last year in order to adapt the experiment for the 3He^{3}{\rm He} data taking. Expected sensitivities on the coupling constant of axions to photons will be given for the recent 3He^{3}{\rm He} run just started in March 2008.Comment: Proceedings of the ICHEP 2008 conferenc

    Prospects for the CERN Axion Solar Telescope Sensitivity to 14.4 keV Axions

    Get PDF
    The CERN Axion Solar Telescope (CAST) is searching for solar axions using the 9.0 T strong and 9.26 m long transverse magnetic field of a twin aperture LHC test magnet, where axions could be converted into X-rays via reverse Primakoff process. Here we explore the potential of CAST to search for 14.4 keV axions that could be emitted from the Sun in M1 nuclear transition between the first, thermally excited state, and the ground state of 57Fe nuclide. Calculations of the expected signals, with respect to the axion-photon coupling, axion-nucleon coupling and axion mass, are presented in comparison with the experimental sensitivity.Comment: 4 pages, 1 figure. Submitted to Nucl. Instr. and Meth.

    Search for solar axion emission from 7Li and D(p,gamma)3He nuclear decays with the CAST gamma-ray calorimeter

    Full text link
    We present the results of a search for a high-energy axion emission signal from 7Li (0.478 MeV) and D(p,gamma)3He (5.5 MeV) nuclear transitions using a low-background gamma-ray calorimeter during Phase I of the CAST experiment. These so-called "hadronic axions" could provide a solution to the long-standing strong-CP problem and can be emitted from the solar core from nuclear M1 transitions. This is the first such search for high-energy pseudoscalar bosons with couplings to nucleons conducted using a helioscope approach. No excess signal above background was found.Comment: 20 pages, 8 figures, final version to be published in JCA

    First results from the CERN Axion Solar Telescope (CAST)

    Full text link
    Hypothetical axion-like particles with a two-photon interaction would be produced in the Sun by the Primakoff process. In a laboratory magnetic field (``axion helioscope'') they would be transformed into X-rays with energies of a few keV. Using a decommissioned LHC test magnet, CAST has been running for about 6 months during 2003. The first results from the analysis of these data are presented here. No signal above background was observed, implying an upper limit to the axion-photon coupling < 1.16 10^{-10} GeV^-1 at 95% CL for m_a <~0.02 eV. This limit is comparable to the limit from stellar energy-loss arguments and considerably more restrictive than any previous experiment in this axion mass range.Comment: 4 pages, accepted by PRL. Final version after the referees comment

    Experimental determination of the complete spin structure for anti-proton + proton -> anti-\Lambda + \Lambda at anti-proton beam momentum of 1.637 GeV/c

    Get PDF
    The reaction anti-proton + proton -> anti-\Lambda + \Lambda -> anti-proton + \pi^+ + proton + \pi^- has been measured with high statistics at anti-proton beam momentum of 1.637 GeV/c. The use of a transversely-polarized frozen-spin target combined with the self-analyzing property of \Lambda/anti-\Lambda decay allows access to unprecedented information on the spin structure of the interaction. The most general spin-scattering matrix can be written in terms of eleven real parameters for each bin of scattering angle, each of these parameters is determined with reasonable precision. From these results all conceivable spin-correlations are determined with inherent self-consistency. Good agreement is found with the few previously existing measurements of spin observables in anti-proton + proton -> anti-\Lambda + \Lambda near this energy. Existing theoretical models do not give good predictions for those spin-observables that had not been previously measured.Comment: To be published in Phys. Rev. C. Tables of results (i.e. Ref. 24) are available at http://www-meg.phys.cmu.edu/~bquinn/ps185_pub/results.tab 24 pages, 16 figure

    Search for low Energy solar Axions with CAST

    Get PDF
    We have started the development of a detector system, sensitive to single photons in the eV energy range, to be suitably coupled to one of the CAST magnet ports. This system should open to CAST a window on possible detection of low energy Axion Like Particles emitted by the sun. Preliminary tests have involved a cooled photomultiplier tube coupled to the CAST magnet via a Galileian telescope and a switched 40 m long optical fiber. This system has reached the limit background level of the detector alone in ideal conditions, and two solar tracking runs have been performed with it at CAST. Such a measurement has never been done before with an axion helioscope. We will present results from these runs and briefly discuss future detector developments.Comment: Paper submitted to the proceedings of the "4th Patras Workshop on Axions, WIMPs and WISPs", DESY, Hamburg Site - Germany, 18-21 June 2008. Author affiliations are reported on the title page of the paper. In version 2: 1 affiliation change, 3 references adde
    corecore