832 research outputs found

    Blur discrimination and its relation to blur-mediated depth perception

    Get PDF
    Retinal images of three-dimensional scenes often contain regions that are spatially blurred by different amounts, owing to depth variation in the scene and depth-of-focus limitations in the eye. Variations in blur between regions in the retinal image therefore offer a cue to their relative physical depths. In the first experiment we investigated apparent depth ordering in images containing two regions of random texture separated by a vertical sinusoidal border. The texture was sharp on one side of the border, and blurred on the other side. In some presentations the border itself was also blurred. Results showed that blur variation alone is sufficient to determine the apparent depth ordering. A subsequent series of experiments measured blur-discrimination thresholds with stimuli similar to those used in the depth-ordering experiment. Weber fractions for blur discrimination ranged from 0.28 to 0.56. It is concluded that the utility of blur variation as a depth cue is constrained by the relatively mediocre ability of observers to discriminate different levels of blur. Blur is best viewed as a relatively coarse, qualitative depth cue

    Effect of Iodine Doping on Bi2_{2}Sr2_{2}Ca1_{1}Cu2_{2}Ox_{x}: Charge Transfer or Interlayer Coupling?

    Full text link
    A comparative study has been made of iodine-intercalated Bi2_{2}Sr2_{2}Ca1_{1}Cu2_{2}Ox_{x} single crystal and 1 atm O2_{2} annealed Bi2_{2}Sr2_{2}Ca1_{1}Cu1_{1}Ox_{x} single crystal using AC susceptibility measurement, X-ray photoemission (XPS) and angle-resolved ultraviolet photoemission spectroscopy (ARUPS). AC susceptibility measurement indicates that O2_{2}-doped samples studied have Tc_{c} of 84 o^{o}K, whereas Tc_{c} of Iodine-doped samples studied are 80 o^{o}K. XPS Cu 2p core level data establish that the hole concentration in the CuO2_{2} planes are essentially the same for these two kinds of samples. ARUPS measurements show that electronic structure of the normal states near the Fermi level has been strongly affected by iodine intercalation. We conclude that the dominant effect of iodine doping is to alter the interlayer coupling.Comment: LBL 9 pages, APS_Revtex. 5 Figures, available upon request. UW-Madison preprin

    Gravitomagnetism and the Clock Effect

    Get PDF
    The main theoretical aspects of gravitomagnetism are reviewed. It is shown that the gravitomagnetic precession of a gyroscope is intimately connected with the special temporal structure around a rotating mass that is revealed by the gravitomagnetic clock effect. This remarkable effect, which involves the difference in the proper periods of a standard clock in prograde and retrograde circular geodesic orbits around a rotating mass, is discussed in detail. The implications of this effect for the notion of ``inertial dragging'' in the general theory of relativity are presented. The theory of the clock effect is developed within the PPN framework and the possibility of measuring it via spaceborne clocks is examined.Comment: 27 pages, LaTeX, submitted to Proc. Bad Honnef Meeting on: GYROS, CLOCKS, AND INTERFEROMETERS: TESTING GENERAL RELATIVITY IN SPACE (22 - 27 August 1999; Bad Honnef, Germany

    Soft systems methodology: a context within a 50-year retrospective of OR/MS

    Get PDF
    Soft systems methodology (SSM) has been used in the practice of operations research and management science OR/MS) since the early 1970s. In the 1990s, it emerged as a viable academic discipline. Unfortunately, its proponents consider SSM and traditional systems thinking to be mutually exclusive. Despite the differences claimed by SSM proponents between the two, they have been complementary. An extensive sampling of the OR/MS literature over its entire lifetime demonstrates the richness with which the non-SSM literature has been addressing the very same issues as does SSM

    High-temperature ferromagnetism of spsp electrons in narrow impurity bands: Application to CaB6_6

    Get PDF
    Ferromagnetism with high Curie temperature TcT_c, well above room temperature, and very small saturation moment has been reported in various carbon and boron systems. It is argued that the magnetization must be very inhomogeneous with only a small fraction of the sample ferromagnetically ordered. It is shown that a possible source of high TcT_c within the ferromagnetic regions is itinerant electrons occupying a narrow impurity band. Correlation effects do not reduce the effective interaction which enters the Stoner criterion in the same way as in a bulk band. It is also shown how, in the impurity band case, spin wave excitations may not be effective in lowering TcT_c below its value given by Stoner theory. These ideas are applied to CaB6_6 and a thorough review of the experimental situation in this material is given. It is suggested that the intrinsic magnetism of the B2_2 and O2_2 dimers might be exploited in suitable structures containing these elements.Comment: 26 pages, 2 figure

    Foundations of Relational Particle Dynamics

    Full text link
    Relational particle dynamics include the dynamics of pure shape and cases in which absolute scale or absolute rotation are additionally meaningful. These are interesting as regards the absolute versus relative motion debate as well as discussion of conceptual issues connected with the problem of time in quantum gravity. In spatial dimension 1 and 2 the relative configuration spaces of shapes are n-spheres and complex projective spaces, from which knowledge I construct natural mechanics on these spaces. I also show that these coincide with Barbour's indirectly-constructed relational dynamics by performing a full reduction on the latter. Then the identification of the configuration spaces as n-spheres and complex projective spaces, for which spaces much mathematics is available, significantly advances the understanding of Barbour's relational theory in spatial dimensions 1 and 2. I also provide the parallel study of a new theory for which positon and scale are purely relative but orientation is absolute. The configuration space for this is an n-sphere regardless of the spatial dimension, which renders this theory a more tractable arena for investigation of implications of scale invariance than Barbour's theory itself.Comment: Minor typos corrected; references update

    Signatures of Quark-Gluon-Plasma formation in high energy heavy-ion collisions: A critical review

    Full text link
    A critical review on signatures of Quark-Gluon-Plasma formation is given and the current (1998) experimental status is discussed. After giving an introduction to the properties of QCD matter in both, equilibrium- and non-equilibrium theories, we focus on observables which may yield experimental evidence for QGP formation. For each individual observable the discussion is divided into three sections: first the connection between the respective observable and QGP formation in terms of the underlying theoretical concepts is given, then the relevant experimental results are reviewed and finally the current status concerning the interpretation of both, theory and experiment, is discussed. A comprehensive summary including an outlook towards RHIC is given in the final section.Comment: Topical review, submitted to Journal of Physics G: 68 pages, including 39 figures (revised version: only minor modifications, some references added

    Triangleland. I. Classical dynamics with exchange of relative angular momentum

    Full text link
    In Euclidean relational particle mechanics, only relative times, relative angles and relative separations are meaningful. Barbour--Bertotti (1982) theory is of this form and can be viewed as a recovery of (a portion of) Newtonian mechanics from relational premises. This is of interest in the absolute versus relative motion debate and also shares a number of features with the geometrodynamical formulation of general relativity, making it suitable for some modelling of the problem of time in quantum gravity. I also study similarity relational particle mechanics (`dynamics of pure shape'), in which only relative times, relative angles and {\sl ratios of} relative separations are meaningful. This I consider firstly as it is simpler, particularly in 1 and 2 d, for which the configuration space geometry turns out to be well-known, e.g. S^2 for the `triangleland' (3-particle) case that I consider in detail. Secondly, the similarity model occurs as a sub-model within the Euclidean model: that admits a shape--scale split. For harmonic oscillator like potentials, similarity triangleland model turns out to have the same mathematics as a family of rigid rotor problems, while the Euclidean case turns out to have parallels with the Kepler--Coulomb problem in spherical and parabolic coordinates. Previous work on relational mechanics covered cases where the constituent subsystems do not exchange relative angular momentum, which is a simplifying (but in some ways undesirable) feature paralleling centrality in ordinary mechanics. In this paper I lift this restriction. In each case I reduce the relational problem to a standard one, thus obtain various exact, asymptotic and numerical solutions, and then recast these into the original mechanical variables for physical interpretation.Comment: Journal Reference added, minor updates to References and Figure
    corecore