191 research outputs found

    Axial-flexural coupled vibration and buckling of composite beams using sinusoidal shear deformation theory

    Get PDF
    A finite element model based on sinusoidal shear deformation theory is developed to study vibration and buckling analysis of composite beams with arbitrary lay-ups. This theory satisfies the zero traction boundary conditions on the top and bottom surfaces of beam without using shear correction factors. Besides, it has strong similarity with Euler–Bernoulli beam theory in some aspects such as governing equations, boundary conditions, and stress resultant expressions. By using Hamilton’s principle, governing equations of motion are derived. A displacement-based one-dimensional finite element model is developed to solve the problem. Numerical results for cross-ply and angle-ply composite beams are obtained as special cases and are compared with other solutions available in the literature. A variety of parametric studies are conducted to demonstrate the effect of fiber orientation and modulus ratio on the natural frequencies, critical buckling loads, and load-frequency curves as well as corresponding mode shapes of composite beams

    Teleparallel Energy-Momentum Distribution of Static Axially Symmetric Spacetimes

    Full text link
    This paper is devoted to discuss the energy-momentum for static axially symmetric spacetimes in the framework of teleparallel theory of gravity. For this purpose, we use the teleparallel versions of Einstein, Landau-Lifshitz, Bergmann and Mo¨\ddot{o}ller prescriptions. A comparison of the results shows that the energy density is different but the momentum turns out to be constant in each prescription. This is exactly similar to the results available in literature using the framework of General Relativity. It is mentioned here that Mo¨\ddot{o}ller energy-momentum distribution is independent of the coupling constant λ\lambda. Finally, we calculate energy-momentum distribution for the Curzon metric, a special case of the above mentioned spacetime.Comment: 14 pages, accepted for publication in Mod. Phys. Lett.

    Static and vibration analysis of functionally graded beams using refined shear deformation theory

    Get PDF
    Static and vibration analysis of functionally graded beams using refined shear deformation theory is presented. The developed theory, which does not require shear correction factor, accounts for shear deformation effect and coupling coming from the material anisotropy. Governing equations of motion are derived from the Hamilton's principle. The resulting coupling is referred to as triply coupled axial-flexural response. A two-noded Hermite-cubic element with five degree-of-freedom per node is developed to solve the problem. Numerical results are obtained for functionally graded beams with simply-supported, cantilever-free and clamped-clamped boundary conditions to investigate effects of the power-law exponent and modulus ratio on the displacements, natural frequencies and corresponding mode shapes

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]
    corecore