337 research outputs found

    Adhesion-induced phase separation of multiple species of membrane junctions

    Full text link
    A theory is presented for the membrane junction separation induced by the adhesion between two biomimetic membranes that contain two different types of anchored junctions (receptor/ligand complexes). The analysis shows that several mechanisms contribute to the membrane junction separation. These mechanisms include (i) the height difference between type-1 and type-2 junctions is the main factor which drives the junction separation, (ii) when type-1 and type-2 junctions have different rigidities against stretch and compression, the ``softer'' junctions are the ``favored'' species, and the aggregation of the softer junction can occur, (iii) the elasticity of the membranes mediates a non-local interaction between the junctions, (iv) the thermally activated shape fluctuations of the membranes also contribute to the junction separation by inducing another non-local interaction between the junctions and renormalizing the binding energy of the junctions. The combined effect of these mechanisms is that when junction separation occurs, the system separates into two domains with different relative and total junction densities.Comment: 23 pages, 6 figure

    Priming by Chemokines Restricts Lateral Mobility of the Adhesion Receptor LFA-1 and Restores Adhesion to ICAM-1 Nano-Aggregates on Human Mature Dendritic Cells

    Get PDF
    LFA-1 is a leukocyte specific β2 integrin that plays a major role in regulating adhesion and migration of different immune cells. Recent data suggest that LFA-1 on mature dendritic cells (mDCs) may function as a chemokine-inducible anchor during homing of DCs through the afferent lymphatics into the lymph nodes, by transiently switching its molecular conformational state. However, the role of LFA-1 mobility in this process is not yet known, despite that the importance of lateral organization and dynamics for LFA-1-mediated adhesion regulation is broadly recognized. Using single particle tracking approaches we here show that LFA-1 exhibits higher mobility on resting mDCs compared to monocytes. Lymphoid chemokine CCL21 stimulation of the LFA-1 high affinity state on mDCs, led to a significant reduction of mobility and an increase on the fraction of stationary receptors, consistent with re-activation of the receptor. Addition of soluble monomeric ICAM-1 in the presence of CCL21 did not alter the diffusion profile of LFA-1 while soluble ICAM-1 nano-aggregates in the presence of CCL21 further reduced LFA-1 mobility and readily bound to the receptor. Overall, our results emphasize the importance of LFA-1 lateral mobility across the membrane on the regulation of integrin activation and its function as adhesion receptor. Importantly, our data show that chemokines alone are not sufficient to trigger the high affinity state of the integrin based on the strict definition that affinity refers to the adhesion capacity of a single receptor to its ligand in solution. Instead our data indicate that nanoclustering of the receptor, induced by multi-ligand binding, is required to maintain stable cell adhesion once LFA-1 high affinity state is transiently triggered by inside-out signals.Peer ReviewedPostprint (published version

    Matched sizes of activating and inhibitory receptor/ligand pairs are required for optimal signal integration by human Natural Killer cells

    Get PDF
    It has been suggested that receptor-ligand complexes segregate or co-localise within immune synapses according to their size, and this is important for receptor signaling. Here, we set out to test the importance of receptor-ligand complex dimensions for immune surveillance of target cells by human Natural Killer (NK) cells. NK cell activation is regulated by integrating signals from activating receptors, such as NKG2D, and inhibitory receptors, such as KIR2DL1. Elongating the NKG2D ligand MICA reduced its ability to trigger NK cell activation. Conversely, elongation of KIR2DL1 ligand HLA-C reduced its ability to inhibit NK cells. Whereas normal-sized HLA-C was most effective at inhibiting activation by normal-length MICA, only elongated HLA-C could inhibit activation by elongated MICA. Moreover, HLA-C and MICA that were matched in size co-localised, whereas HLA-C and MICA that were different in size were segregated. These results demonstrate that receptor-ligand dimensions are important in NK cell recognition, and suggest that optimal integration of activating and inhibitory receptor signals requires the receptor-ligand complexes to have similar dimensions

    Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons

    Get PDF
    The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions

    Stable Cytotoxic T Cell Escape Mutation in Hepatitis C Virus Is Linked to Maintenance of Viral Fitness

    Get PDF
    Mechanisms by which hepatitis C virus (HCV) evades cellular immunity to establish persistence in chronically infected individuals are not clear. Mutations in human leukocyte antigen (HLA) class I-restricted epitopes targeted by CD8+ T cells are associated with persistence, but the extent to which these mutations affect viral fitness is not fully understood. Previous work showed that the HCV quasispecies in a persistently infected chimpanzee accumulated multiple mutations in numerous class I epitopes over a period of 7 years. During the acute phase of infection, one representative epitope in the C-terminal region of the NS3/4A helicase, NS31629-1637, displayed multiple serial amino acid substitutions in major histocompatibility complex (MHC) anchor and T cell receptor (TCR) contact residues. Only one of these amino acid substitutions at position 9 (P9) of the epitope was stable in the quasispecies. We therefore assessed the effect of each mutation observed during in vivo infection on viral fitness and T cell responses using an HCV subgenomic replicon system and a recently developed in vitro infectious virus cell culture model. Mutation of a position 7 (P7) TCR-contact residue, I1635T, expectedly ablated the T cell response without affecting viral RNA replication or virion production. In contrast, two mutations at the P9 MHC-anchor residue abrogated antigen-specific T cell responses, but additionally decreased viral RNA replication and virion production. The first escape mutation, L1637P, detected in vivo only transiently at 3 mo after infection, decreased viral production, and reverted to the parental sequence in vitro. The second P9 variant, L1637S, which was stable in vivo through 7 years of follow-up, evaded the antigen-specific T cell response and did not revert in vitro despite being less optimal in virion production compared to the parental virus. These studies suggest that HCV escape mutants emerging early in infection are not necessarily stable, but are eventually replaced with variants that achieve a balance between immune evasion and fitness for replication

    Ribavirin Enhances IFN-α Signalling and MxA Expression: A Novel Immune Modulation Mechanism during Treatment of HCV

    Get PDF
    The nucleoside analogue Ribavirin significantly increases patient response to IFN-α treatment of HCV, by directly inhibiting viral replication. Recent studies indicate that Ribavirin also regulates immunity and we propose that Ribavirin enhances specific interferon sensitive gene (ISG) expression by amplifying the IFN-α-JAK/STAT pathway. We found that IFN-α-induced STAT1 and STAT3 phosphorylation was increased in hepatocytes co-treated with Ribavirin and IFN-α, compared to IFN-α alone. Ribavirin specifically enhanced IFN-α induced mRNA and protein of the anti-viral mediator MxA, which co-localised with HCV core protein. These novel findings indicate for the first time that Ribavirin, in addition to its viral incorporation, also enhances IFN-α-JAK/STAT signalling, leading to a novel MxA-mediated immuno-modulatory mechanism that may enhance IFN-α anti-viral activity against HCV

    Impaired Hepatitis C Virus-Specific T Cell Responses and Recurrent Hepatitis C Virus in HIV Coinfection

    Get PDF
    BACKGROUND: Hepatitis C virus (HCV)-specific T cell responses are critical for spontaneous resolution of HCV viremia. Here we examined the effect of a lymphotropic virus, HIV-1, on the ability of coinfected patients to maintain spontaneous control of HCV infection. METHODS AND FINDINGS: We measured T cell responsiveness by lymphoproliferation and interferon-γ ELISPOT in a large cohort of HCV-infected individuals with and without HIV infection. Among 47 HCV/HIV-1-coinfected individuals, spontaneous control of HCV was associated with more frequent HCV-specific lymphoproliferative (LP) responses (35%) compared to coinfected persons who exhibited chronic HCV viremia (7%, p = 0.016), but less frequent compared to HCV controllers who were not HIV infected (86%, p = 0.003). Preservation of HCV-specific LP responses in coinfected individuals was associated with a higher nadir CD4 count (r (2) = 0.45, p < 0.001) and the presence and magnitude of the HCV-specific CD8(+) T cell interferon-γ response (p = 0.0014). During long-term follow-up, recurrence of HCV viremia occurred in six of 25 coinfected individuals with prior control of HCV, but in 0 of 16 HIV-1-negative HCV controllers (p = 0.03, log rank test). In these six individuals with recurrent HCV viremia, the magnitude of HCV viremia following recurrence inversely correlated with the CD4 count at time of breakthrough (r = −0.94, p = 0.017). CONCLUSIONS: These results indicate that HIV infection impairs the immune response to HCV—including in persons who have cleared HCV infection—and that HIV-1-infected individuals with spontaneous control of HCV remain at significant risk for a second episode of HCV viremia. These findings highlight the need for repeat viral RNA testing of apparent controllers of HCV infection in the setting of HIV-1 coinfection and provide a possible explanation for the higher rate of HCV persistence observed in this population

    Effects of Intracellular Calcium and Actin Cytoskeleton on TCR Mobility Measured by Fluorescence Recovery

    Get PDF
    Background: The activation of T lymphocytes by specific antigen is accompanied by the formation of a specialized signaling region termed the immunological synapse, characterized by the clustering and segregation of surface molecules and, in particular, by T cell receptor (TCR) clustering. Methodology/Principal Findings: To better understand TCR motion during cellular activation, we used confocal microscopy and photo-bleaching recovery techniques to investigate the lateral mobility of TCR on the surface of human T lymphocytes under various pharmacological treatments. Using drugs that cause an increase in intracellular calcium, we observed a decrease in TCR mobility that was dependent on a functional actin cytoskeleton. In parallel experiments measurement of filamentous actin by FACS analysis showed that raising intracellular calcium also causes increased polymerization of the actin cytoskeleton. These in vitro results were analyzed using a mathematical model that revealed effective binding parameters between TCR and the actin cytoskeleton. Conclusion/Significance: We propose, based on our results, that increase in intracellular calcium levels leads to actin polymerization and increases TCR/cytoskeleton interactions that reduce the overall mobility of the TCR. In a physiological setting, this may contribute to TCR re-positioning at the immunological synapse

    Cell Culture Replication of a Genotype 1b Hepatitis C Virus Isolate Cloned from a Patient Who Underwent Liver Transplantation

    Get PDF
    The introduction of the genotype 2a isolate JFH1 was a major breakthrough in the field of hepatitis C virus (HCV), allowing researchers to study the complete life cycle of the virus in cell culture. However, fully competent culture systems encompassing the most therapeutically relevant HCV genotypes are still lacking, especially for the highly drug-resistant genotype 1b. For most isolated HCV clones, efficient replication in cultured hepatoma cells requires the introduction of replication-enhancing mutations. However, such mutations may interfere with viral assembly, as occurs in the case of the genotype 1b isolate Con1. In this study, we show that a clinical serum carrying a genotype 1b virus with an exceptionally high viral load was able to infect Huh7.5 cells. Similar to previous reports, inoculation of Huh7.5 cells by natural virus is very inefficient compared to infection by cell culture HCV. A consensus sequence of a new genotype 1b HCV isolate was cloned from the clinical serum (designated Barcelona HCV1), and then subjected to replication studies. This virus replicated poorly in a transient fashion in Huh7.5 cells after electroporation with in vitro transcribed RNA. Nonetheless, approximately 3 weeks post electroporation and thereafter, core protein-positive cells were detected by immunofluorescence. Surprisingly, small amounts of core protein were also measurable in the supernatant of electroporated cells, suggesting that HCV particles might be assembled and released. Our findings not only enhance the current method of cloning in vitro HCV replication-competent isolates, but also offer valuable insights for the realization of fully competent culture systems for HCV

    HLA-DR Alpha 2 Mediates Negative Signalling via Binding to Tirc7 Leading to Anti-Inflammatory and Apoptotic Effects in Lymphocytes In Vitro and In Vivo

    Get PDF
    Classically, HLA-DR expressed on antigen presenting cells (APC) initiates lymphocyte activation via presentation of peptides to TCR bearing CD4+ T-Cells. Here we demonstrate that HLA-DR alpha 2 domain (sHLA-DRα2) also induces negative signals by engaging TIRC7 on lymphocytes. This interaction inhibits proliferation and induces apoptosis in CD4+ and CD8+ T-cells via activation of the intrinsic pathway. Proliferation inhibition is associated with SHP-1 recruitment by TIRC7, decreased phosphorylation of STAT4, TCR-ζ chain & ZAP70, and inhibition of IFN-γ and FasL expression. HLA-DRα2 and TIRC7 co-localize at the APC-T cell interaction site. Triggering HLA-DR - TIRC7 pathway demonstrates that sHLA-DRα2 treatment inhibits proinflammatory-inflammatory cytokine expression in APC & T cells after lipopolysaccaride (LPS) stimulation in vitro and induces apoptosis in vivo. These results suggest a novel antiproliferative role for HLA-DR mediated via TIRC7, revise the notion of an exclusive stimulatory interaction of HLA-DR with CD4+ T cells and highlights a novel physiologically relevant regulatory pathway
    corecore