482 research outputs found

    Parity Violation in Proton-Proton Scattering

    Full text link
    Measurements of parity-violating longitudinal analyzing powers (normalized asymmetries) in polarized proton-proton scattering provide a unique window on the interplay between the weak and strong interactions between and within hadrons. Several new proton-proton parity violation experiments are presently either being performed or are being prepared for execution in the near future: at TRIUMF at 221 MeV and 450 MeV and at COSY (Kernforschungsanlage Juelich) at 230 MeV and near 1.3 GeV. These experiments are intended to provide stringent constraints on the set of six effective weak meson-nucleon coupling constants, which characterize the weak interaction between hadrons in the energy domain where meson exchange models provide an appropriate description. The 221 MeV is unique in that it selects a single transition amplitude (3P2-1D2) and consequently constrains the weak meson-nucleon coupling constant h_rho{pp}. The TRIUMF 221 MeV proton-proton parity violation experiment is described in some detail. A preliminary result for the longitudinal analyzing power is Az = (1.1 +/-0.4 +/-0.4) x 10^-7. Further proton-proton parity violation experiments are commented on. The anomaly at 6 GeV/c requires that a new multi-GeV proton-proton parity violation experiment be performed.Comment: 13 Pages LaTeX, 5 PostScript figures, uses espcrc1.sty. Invited talk at QULEN97, International Conference on Quark Lepton Nuclear Physics -- Nonperturbative QCD Hadron Physics & Electroweak Nuclear Processes --, Osaka, Japan May 20--23, 199

    Quantum transport in ultracold atoms

    Full text link
    Ultracold atoms confined by engineered magnetic or optical potentials are ideal systems for studying phenomena otherwise difficult to realize or probe in the solid state because their atomic interaction strength, number of species, density, and geometry can be independently controlled. This review focuses on quantum transport phenomena in atomic gases that mirror and oftentimes either better elucidate or show fundamental differences with those observed in mesoscopic and nanoscopic systems. We discuss significant progress in performing transport experiments in atomic gases, contrast similarities and differences between transport in cold atoms and in condensed matter systems, and survey inspiring theoretical predictions that are difficult to verify in conventional setups. These results further demonstrate the versatility offered by atomic systems in the study of nonequilibrium phenomena and their promise for novel applications.Comment: 24 pages, 7 figures. A revie

    Oscillatory Exchange Coupling and Positive Magnetoresistance in Epitaxial Oxide Heterostructures

    Full text link
    Oscillations in the exchange coupling between ferromagnetic La2/3Ba1/3MnO3La_{2/3}Ba_{1/3}MnO_3 layers with paramagnetic LaNiO3LaNiO_3 spacer layer thickness has been observed in epitaxial heterostructures of the two oxides. This behavior is explained within the RKKY model employing an {\it ab initio} calculated band structure of LaNiO3LaNiO_3, taking into account strong electron scattering in the spacer. Antiferromagnetically coupled superlattices exhibit a positive current-in-plane magnetoresistance.Comment: 4 pages (RevTeX), 5 figures (EPS

    Artificial graphene as a tunable Dirac material

    Full text link
    Artificial honeycomb lattices offer a tunable platform to study massless Dirac quasiparticles and their topological and correlated phases. Here we review recent progress in the design and fabrication of such synthetic structures focusing on nanopatterning of two-dimensional electron gases in semiconductors, molecule-by-molecule assembly by scanning probe methods, and optical trapping of ultracold atoms in crystals of light. We also discuss photonic crystals with Dirac cone dispersion and topologically protected edge states. We emphasize how the interplay between single-particle band structure engineering and cooperative effects leads to spectacular manifestations in tunneling and optical spectroscopies.Comment: Review article, 14 pages, 5 figures, 112 Reference

    A New Hierarchy of Research Evidence for Tumor Pathology: A Delphi Study to Define Levels of Evidence in Tumor Pathology

    Get PDF
    Copyright \ua9 2023 The Authors. Published by Elsevier Inc. All rights reserved. The hierarchy of evidence is a fundamental concept in evidence-based medicine, but existing models can be challenging to apply in laboratory-based health care disciplines, such as pathology, where the types of evidence and contexts are significantly different from interventional medicine. This project aimed to define a comprehensive and complementary framework of new levels of evidence for evaluating research in tumor pathology-introducing a novel Hierarchy of Research Evidence for Tumor Pathology collaboratively designed by pathologists with help from epidemiologists, public health professionals, oncologists, and scientists, specifically tailored for use by pathologists-and to aid in the production of the World Health Organization Classification of Tumors (WCT) evidence gap maps. To achieve this, we adopted a modified Delphi approach, encompassing iterative online surveys, expert oversight, and external peer review, to establish the criteria for evidence in tumor pathology, determine the optimal structure for the new hierarchy, and ascertain the levels of confidence for each type of evidence. Over a span of 4 months and 3 survey rounds, we collected 1104 survey responses, culminating in a 3-day hybrid meeting in 2023, where a new hierarchy was unanimously agreed upon. The hierarchy is organized into 5 research theme groupings closely aligned with the subheadings of the WCT, and it consists of 5 levels of evidence-level P1 representing evidence types that merit the greatest level of confidence and level P5 reflecting the greatest risk of bias. For the first time, an international collaboration of pathology experts, supported by the International Agency for Research on Cancer, has successfully united to establish a standardized approach for evaluating evidence in tumor pathology. We intend to implement this novel Hierarchy of Research Evidence for Tumor Pathology to map the available evidence, thereby enriching and informing the WCT effectively

    Impaired neonatal macrophage phagocytosis is not explained by overproduction of prostaglandin E2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neonates and young infants manifest increased susceptibility to bacterial, viral and fungal lung infections. Previous work has identified a role for eicosanoids in mediating host defense functions of macrophages. This study examines the relationship between alveolar macrophage (AM) host defense and production of lipid mediators during the neonatal period compared to adult AMs.</p> <p>Methods</p> <p>AMs were harvested from young (day 7 and day 14) and adult (~10 week) rats. The functionality of these cells was assessed by examining their ability to phagocytose opsonized targets, produce cytokines, eicosanoids and intracellular cAMP measured by enzyme immunoassays, and gene expression of proteins, enzymes and receptors essential for eicosanoid generation and phagocytosis measured by real time RT-PCR.</p> <p>Results</p> <p>AMs from young animals (day 7 and 14) were defective in their ability to phagocytose opsonized targets and produce tumor necrosis factor (TNF)- α. In addition, young AMs produce more prostaglandin (PG) E<sub>2</sub>, a suppressor of host defense, and less leukotriene (LT) B<sub>4</sub>, a promoter of host defense. Young AMs express higher levels of enzymes responsible for the production of PGE<sub>2 </sub>and LTB<sub>4</sub>; however, there was no change in the expression of E prostanoid (EP) receptors or LT receptors. Despite the similar EP profiles, young AMs are more responsive to PGE<sub>2 </sub>as evidenced by their increased production of the important second messenger, cyclic AMP. In addition, young AMs express higher levels of PDE3B and lower levels of PDE4C compared to adult AMs. However, even though the young AMs produced a skewed eicosanoid profile, neither the inhibition of PGE<sub>2 </sub>by aspirin nor the addition of exogenous LTB<sub>4 </sub>rescued the defective opsonized phagocytosis. Examination of a receptor responsible for mediating opsonized phagocytosis showed a significant decrease in the gene expression levels of the Fcgamma receptor in young (day 7) AMs compared to adult AMs.</p> <p>Conclusion</p> <p>These results suggest that elevated production of PGE<sub>2 </sub>and decreased production of LTB<sub>4 </sub>do not contribute to impaired opsonized macrophage phagocytosis and highlight an important difference between young and adult AMs.</p

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio

    Use of a non-homologous end-joining-deficient strain (delta-ku70) of the biocontrol fungus Trichoderma virens to investigate the function of the laccase gene lcc1 in sclerotia degradation

    Get PDF
    The aim of this study was to apply a generated Δtku70 strain with increased homologous recombination efficiency from the mycoparasitic fungus Trichoderma virens for studying the involvement of laccases in the degradation of sclerotia of plant pathogenic fungi. Inactivation of the non-homologous end-joining pathway has become a successful tool in filamentous fungi to overcome poor targeting efficiencies for genetic engineering. Here, we applied this principle to the biocontrol fungus T. virens, strain I10, by deleting its tku70 gene. This strain was subsequently used to delete the laccase gene lcc1, which we found to be expressed after interaction of T. virens with sclerotia of the plant pathogenic fungi Botrytis cinerea and Sclerotinia sclerotiorum. Lcc1 was strongly upregulated at early colonization of B. cinerea sclerotia and steadily induced during colonization of S. sclerotiorum sclerotia. The Δtku70Δlcc1 mutant was altered in its ability to degrade the sclerotia of B. cinerea and S. sclerotiorum. Interestingly, while the decaying ability for B. cinerea sclerotia was significantly decreased, that to degrade S. sclerotiorum sclerotia was even enhanced, suggesting the operation of different mechanisms in the mycoparasitism of these two types of sclerotia by the laccase LCC1
    corecore