157 research outputs found

    Shock heating of the merging galaxy cluster A521

    Get PDF
    A521 is an interacting galaxy cluster located at z=0.247, hosting a low frequency radio halo connected to an eastern radio relic. Previous Chandra observations hinted at the presence of an X-ray brightness edge at the position of the relic, which may be a shock front. We analyze a deep observation of A521 recently performed with XMM-Newton in order to probe the cluster structure up to the outermost regions covered by the radio emission. The cluster atmosphere exhibits various brightness and temperature anisotropies. In particular, two cluster cores appear to be separated by two cold fronts. We find two shock fronts, one that was suggested by Chandra and that is propagating to the east, and another to the southwestern cluster outskirt. The two main interacting clusters appear to be separated by a shock heated region, which exhibits a spatial correlation with the radio halo. The outer edge of the radio relic coincides spatially with a shock front, suggesting this shock is responsible for the generation of cosmic ray electrons in the relic. The propagation direction and Mach number of the shock front derived from the gas density jump, M = 2.4 +/- 0.2, are consistent with expectations from the radio spectral index, under the assumption of Fermi I acceleration mechanism

    A giant radio halo in the massive and merging cluster Abell 1351

    Full text link
    We report on the detection of diffuse radio emission in the X-ray luminous and massive galaxy cluster A1351 (z=0.322) using archival Very Large Array data at 1.4 GHz. Given its central location, morphology, and Mpc-scale extent, we classify the diffuse source as a giant radio halo. X-ray and weak lensing studies show A1351 to be a system undergoing a major merger. The halo is associated with the most massive substructure. The presence of this source is explained assuming that merger-driven turbulence may re-accelerate high-energy particles in the intracluster medium and generate diffuse radio emission on the cluster scale. The position of A1351 in the logP1.4GHz_{1.4 GHz} - logLX_{X} plane is consistent with that of all other radio-halo clusters known to date, supporting a causal connection between the unrelaxed dynamical state of massive (>1015M>10^{15} M_{\odot}) clusters and the presence of giant radio halos.Comment: 4 pages, 3 figures, proof corrections include

    GMRT Radio Halo Survey in galaxy clusters at z = 0.2 -- 0.4. II.The eBCS clusters and analysis of the complete sample

    Full text link
    We present the results of the GMRT cluster radio halo survey. The main purposes of our observational project are to measure which fraction of massive galaxy clusters in the redshift range z=0.2--0.4 hosts a radio halo, and to constrain the expectations of the particle re--acceleration model for the origin of the non--thermal radio emission. We selected a complete sample of 50 clusters in the X-ray band from the REFLEX (27) and the eBCS (23) catalogues. In this paper we present Giant Metrewave Radio Telescope (GMRT) observations at 610 MHz for all clusters still lacking high sensitivity radio information, i.e. 16 eBCS and 7 REFLEX clusters, thus completing the radio information for the whole sample. The typical sensitivity in our images is in the range 1σ35100μ\sigma \sim 35-100 \muJy b1^{-1}. We found a radio halo in A697, a diffuse peripheral source of unclear nature in A781, a core--halo source in Z7160, a candidate radio halo in A1682 and ``suspect'' central emission in Z2661. Including the literature information, a total of 10 clusters in the sample host a radio halo. A very important result of our work is that 25 out of the 34 clusters observed with the GMRT do not host extended central emission at the sensitivity level of our observations, and for 20 of them firm upper limits to the radio power of a giant radio halo were derived. The GMRT Radio Halo Survey shows that radio halos are not common, and our findings on the fraction of giant radio halos in massive clusters are consistent with the statistical expectations based on the re--acceleration model. Our results favour primary to secondary electron models.Comment: A&A in press, 17 pages, 12 figures, 4 tables Version with high quality figures available on web at http://www.ira.inaf.it/~tventuri/pap/Venturi_web.pd

    The cluster relic source in A521

    Full text link
    We present high sensitivity radio observations of the merging cluster A521, at a mean redsfhit z=0.247. The observations were carried out with the GMRT at 610 MHz and cover a region of \sim1 square degree, with a sensitivity limit of 1σ1\sigma = 35 μ\muJy b1^{-1}. The most relevant result of these observations is the presence of a radio relic at the cluster periphery, at the edge of a region where group infalling into the main cluster is taking place. Thanks to the wealth of information available in the literature in the optical and X-ray bands, a multi--band study of the relic and its surroundings was performed. Our analysis is suggestive of a connection between this source and the complex ongoing merger in the A521 region. The relic might be ``revived' fossil radio plasma through adiabatic compression of the magnetic field or shock re--acceleration due to the merger events. We also briefly discussed the possibility that this source is the result of induced ram pressure stripping of radio lobes associated with the nearby cluster radio galaxy J0454--1016a. Allowing for the large uncertainties due to the small statistics, the number of radio emitting early--type galaxies found in A521 is consistent with the expectations from the standard radio luminosity function for local (z\le0.09) cluster ellipticals.Comment: 30 pages 8 figures, 5 tables, accepted by New Astronom

    The Extended GMRT Radio Halo Survey I: New upper limits on radio halos and mini-halos

    Full text link
    A fraction of galaxy clusters host diffuse radio sources called radio halos, radio relics and mini-halos. We present the sample and first results from the Extended GMRT Radio Halo Survey (EGRHS)- an extension of the GMRT Radio Halo Survey (GRHS, Venturi et al. 2007, 2008). It is a systematic radio survey of galaxy clusters selected from the REFLEX and eBCS X-ray catalogs . Analysis of GMRT data at 610/ 235/ 325 MHz on 12 galaxy clusters are presented. We report the detection of a newly discovered mini-halo in the cluster RXJ1532.9+3021 at 610 MHz. A small scale relic (~200 kpc) is suspected in the cluster Z348. We do not detect cluster-scale diffuse emission in 11 clusters. Robust upper limits on the detection of radio halo of size of 1 Mpc are determined. We also present upper limits on the detections of mini-halos in a sub-sample of cool-core clusters. The upper limits for radio halos and mini-halos are plotted in the radio power- X-ray luminosity plane and the correlations are discussed. Diffuse extended emission, not related to the target clusters, but detected as by-products in the sensitive images of two of the cluster fields (A689 and RXJ0439.0+0715) are reported. Based on the information about the presence of radio halos (or upper limits), available on 48 clusters out of the total sample of 67 clusters (EGRHS+GRHS), we find that ~23% of the clusters host radio halos. The radio halo fraction rises to ~31%, when only the clusters with X-ray luminosities >8x10^44 erg/s are considered. Mini-halos are found in ~50 % of cool-core clusters. A qualitative examination of the X-ray images of the clusters with no diffuse radio emission indicates that a majority of these clusters do not show extreme dynamical disturbances and supports the idea that mergers play an important role in the generation of radio halos/relics.Comment: 21 pages, 18 figures, 3 tables, accepted for publication in A&

    Radio halos in merging clusters of galaxies

    Full text link
    We present the preliminary results of 235 MHz, 327 MHz and 610 MHz observations of the galaxy cluster A3562 in the core of the Shapley Concentration. The purpose of these observations, carried out with the Giant Metrewave Radio Telescope (GMRT, Pune, India) was to study the radio halo located at the centre of A3562 and determine the shape of its radio spectrum at low frequencies, in order to understand the origin of this source. In the framework of the re--acceleration model, the preliminary analysis of the halo spectrum suggests that we are observing a young source (few 10810^8 yrs) at the beginning of the re--acceleration phase.Comment: 3 pages, 2 figures. Proceedings of IAU Colloquium 195 - Outskirts of Galaxy Clusters: intense life in the suburb

    Revisiting scaling relations for giant radio halos in galaxy clusters

    Get PDF
    Many galaxy clusters host Megaparsec-scale radio halos, generated by ultrarelativistic electrons in the magnetized intracluster medium. Correlations between the power of radio halos and the thermal properties of the hosting clusters were established in the last decade, including the connection between the presence of a halo and cluster mergers. The X-ray luminosity and redshift limited Extended GMRT Radio Halo Survey provides a rich and unique dataset for statistical studies of the halos. We uniformly analyze the radio and X-ray data for the GMRT cluster sample, and use the new Planck SZ catalog, to revisit the correlations between the power of halos and the thermal properties of galaxy clusters. We find that the radio power of halos at 1.4 GHz scales with the cluster X-ray (0.1--2.4 keV) luminosity computed within R_500 as P_1.4 L_500^2.0. Our bigger and more homogenous sample confirms that the X-ray luminous (L_500 > 5x10^44 erg/s) clusters branch into two populations --- radio halos lie on the correlation, while clusters with upper limits to radio-halo emission are well below that correlation. This bimodality remains if we excise cool cores from the X-ray luminosities. Correlating with Planck data, we find that P_1.4 scales with the cluster integrated SZ signal within R_500 as P_1.4 Y_500^2.1, in line with previous findings. However, contrary to previous studies that were limited by incompleteness and small sample size, we find that the "SZ-luminous" Y_500 > 6x10^-5 Mpc^2 clusters show a bimodal behavior similar to that in the radio-X-ray diagram. Bimodality of both correlations can be traced to clusters dynamics, with radio halos found exclusively in merging clusters. These results confirm the key role of mergers for the origin of giant radio halos, suggesting that they trigger the relativistic particle acceleration.Comment: 16 pages, 7 figures, accepted for publication in ApJ on September 12, 201

    Testing the radio halo-cluster merger scenario. The case of RXCJ2003.5-2323

    Full text link
    We present a combined radio, X-ray and optical study of the galaxy cluster RXCJ2003.5-2323. The cluster hosts one of the largest, most powerful and distant giant radio halos known to date, suggesting that it may be undergoing a strong merger process. The aim of our multiwavelength study is to investigate the radio-halo cluster merger scenario. We studied the radio properties of the giant radio halo in RXCJ2003.5-2323 by means of new radio data obtained at 1.4 GHz with the Very Large Array, and at 240 MHz with the Giant Metrewave Radio Telescope, in combination with previously published GMRT data at 610 MHz. The dynamical state of the cluster was investigated by means of X-ray Chandra observations and optical ESO--NTT observations. Our study confirms that RXCJ2003.5-2323 is an unrelaxed cluster. The unusual filamentary and clumpy morphology of the radio halo could be due to a combination of the filamentary structure of the magnetic field and turbulence in the inital stage of a cluster merger.Comment: 10 page, 10 figures, accepted for publication on A&

    The Extended GMRT Radio Halo Survey II: Further results and analysis of the full sample

    Get PDF
    The intra-cluster medium contains cosmic rays and magnetic fields that are manifested through the large scale synchrotron sources, termed as radio halos, relics and mini-halos. The Extended Giant Metrewave Radio Telescope (GMRT) Radio Halo Survey (EGRHS) is an extension of the GMRT Radio Halo Survey (GRHS) designed to search for radio halos using GMRT 610/235 MHz observations. The GRHS+EGRHS consists of 64 clusters in the redshift range 0.2 -- 0.4 that have an X-ray luminosity larger than 5x10^44 erg/s in the 0.1 -- 2.4 keV band and with declinations > -31 deg in the REFLEX and eBCS X-ray cluster catalogues. In this second paper in the series, GMRT 610/235 MHz data on the last batch of 11 galaxy clusters and the statistical analysis of the full sample are presented. A new mini-halo in RXJ2129.6+0005 and candidate diffuse sources in Z5247, A2552 and Z1953 are discovered. A unique feature of this survey are the upper limits on the detections of 1 Mpc sized radio halos; 4 new are presented here making a total of 31 in the survey. Of the sample, 58 clusters that have adequately sensitive radio information were used to obtain the most accurate occurrence fractions so far. The occurrence of radio halos in our X-ray selected sample is ~22%, that of mini-halos is 13% and that of relics is ~5%. The radio power - X-ray luminosity diagrams for the radio halos and mini-halos with the detections and upper limits are presented. The morphological estimators namely, centroid shift (w), concentration parameter (c) and power ratios (P_3/P_0) derived from the Chandra X-ray images are used as proxies for the dynamical states of the GRHS+EGRHS clusters. The clusters with radio halos and mini-halos occupy distinct quadrants in the c-w, c-P_3/P_0 and w - P_3/P_0 planes, corresponding to the more and less morphological disturbance, respectively. The non-detections span both the quadrants.Comment: 24 pages, 5 tables, 25 figures, accepted for publication in A&

    Shock acceleration as origin of the radio relic in A521?

    Full text link
    We present new high sensitivity observations of the radio relic in A521 carried out with the Giant Metrewave Radio Telescope at 327 MHz and with the Very Large Array at 4.9 and 8.5 GHz. We imaged the relic at these frequencies and carried out a detailed spectral analysis, based on the integrated radio spectrum between 235 MHz and 4.9 GHz, and on the spectral index image in the frequency range 327-610 MHz. To this aim we used the new GMRT observations and other proprietary as well as archival data. We also searched for a possible shock front co-located with the relic on a short archival Chandra X-ray observation of the cluster. The integrated spectrum of the relic is consistent with a single power law; the spectral index image shows a clear trend of steepening going from the outer portion of the relic toward the cluster centre. We discuss the origin of the source in the light of the theoretical models for the formation of cluster radio relics. Our results on the spectral properties of the relic are consistent with acceleration of relativistic electrons by a shock in the intracluster medium. This scenario is further supported by our finding of an X-ray surface brightness edge coincident with the outer border of the radio relic. This edge is likely a shock front.Comment: 13 pages, 12 figures, accepted for publication in A&
    corecore