138 research outputs found

    Measure Recognition Problem

    Get PDF
    This is an article in mathematics, specifically in set theory. On the example of the Measure Recognition Problem (MRP) the article highlights the phenomenon of the utility of a multidisciplinary mathematical approach to a single mathematical problem, in particular the value of a set-theoretic analysis. MRP asks if for a given Boolean algebra \algB and a property Φ\Phi of measures one can recognize by purely combinatorial means if \algB supports a strictly positive measure with property Φ\Phi. The most famous instance of this problem is MRP(countable additivity), and in the first part of the article we survey the known results on this and some other problems. We show how these results naturally lead to asking about two other specific instances of the problem MRP, namely MRP(nonatomic) and MRP(separable). Then we show how our recent work D\v zamonja and Plebanek (2006) gives an easy solution to the former of these problems, and gives some partial information about the latter. The long term goal of this line of research is to obtain a structure theory of Boolean algebras that support a finitely additive strictly positive measure, along the lines of Maharam theorem which gives such a structure theorem for measure algebras

    Completability and optimal factorization norms in tensor products of Banach function spaces

    Full text link
    [EN] Given s-finite measure spaces ( 1, 1, mu 1) and ( 2, 2, mu 2), we consider Banach spaces X1(mu 1) and X2(mu 2), consisting of L0(mu 1) and L0(mu 2) measurable functions respectively, and study when the completion of the simple tensors in the projective tensor product X1(mu 1). p X2(mu 2) is continuously included in the metric space of measurable functions L0(mu 1. mu 2). In particular, we prove that the elements of the completion of the projective tensor product of L p-spaces are measurable functions with respect to the product measure. Assuming certain conditions, we finally showthat given a bounded linear operator T : X1(mu 1). p X2(mu 2). E (where E is a Banach space), a norm can be found for T to be bounded, which is ` minimal' with respect to a given property (2-rectangularity). The same technique may work for the case of n-spaces.J. M. Calabuig and M. Fernandez-Unzueta were supported by Ministerio de Economia, Industria y Competitividad (Spain) under project MTM2014-53009-P. M. Fernandez-Unzueta was also suported by CONACyT 284110. F. Galaz-Fontes was supported by Ministerio de Ciencia e Innovacion (Spain) and FEDER under project MTM2009-14483-C02-01. E. A. Sanchez Perez was supported by Ministerio de Economia, Industria y Competitividad (Spain) and FEDER under project MTM2016-77054-C2-1-P.Calabuig, JM.; Fernández-Unzueta, M.; Galaz-Fontes, F.; Sánchez Pérez, EA. (2019). Completability and optimal factorization norms in tensor products of Banach function spaces. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 113(4):3513-3530. https://doi.org/10.1007/s13398-019-00711-7S351335301134Abramovich, Y.A., Aliprantis, C.D.: An invitation to operator theory. Graduate Studies in Mathematics, Vol 50, AMS (2002)Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, Boston (1988)Bu, Q., Buskes, G., Kusraev, A.G.: Bilinear maps on products of vector lattices: a survey. In: Boulabiar, K., Buskes, G., Triki, A. (eds.) Positivity-Trends in Mathematics. Birkhäser Verlag AG, Basel, pp. 97–26 (2007)Buskes, G., Van Rooij, A.: Bounded variation and tensor products of Banach lattices. Positivity 7, 47–59 (2003)Calabuig, J.M., Fernández-Unzueta, M., Galaz-Fontes, F., Sánchez-Pérez, E.A.: Extending and factorizing bounded bilinear maps defined on order continuous Banach function spaces. RACSAM 108(2), 353–367 (2014)Calabuig, J.M., Fernández-Unzueta, M., Galaz-Fontes, F., Sánchez-Pérez, E.A.: Equivalent norms in a Banach function space and the subsequence property. J. Korean Math. Soc. https://doi.org/10.4134/JKMS.j180682Curbera, G.P., Ricker, W.J.: Optimal domains for kernel operators via interpolation. Math. Nachr. 244, 47–63 (2002)Curbera, G.P., Ricker, W.J.: Vector measures, integration and applications. In: Positivity. Birkhäuser Basel, pp. 127–160 (2007)Gil de Lamadrid, J.: Uniform cross norms and tensor products. J. Duke Math. 32, 797–803 (1965)Dunford, N., Schwartz, J.: Linear Operators, Part I: General Theory. Interscience Publishers Inc., New York (1958)Fremlin, D.H.: Tensor products of Archimedean vector lattices. Am. J. Math. 94(3), 777–798 (1972)Fremlin, D.H.: Tensor products of Banach lattices. Math. Ann. 211(2), 87–106 (1974)Yew, K.L.: Completely pp-summing maps on the operator Hilbert space OH. J. Funct. Anal. 255, 1362–1402 (2008)Kwapien, S., Pelczynski, A.: The main triangle projection in matrix spaces and its applications. Stud. Math. 34(1), 43–68 (1970)Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces II. Springer, Berlin (1979)Luxemburg, W.A.J., Zaanen, A.C.: Riesz Spaces I. North-Holland Publishing Company, Amsterdam (1971)Milman, M.: Some new function spaces and their tensor products. Depto. de Matemática, Facultad de Ciencias, U. de los Andes, Mérida, Venezuela (1978)Okada, S., Ricker, W.J., Sánchez Pérez, E.A.: Optimal domain and integral extension of operators acting in function spaces. Oper. Theory Adv. Appl., vol. 180. Birkhäuser, Basel (2008)Schep, A.R.: Factorization of positive multilinear maps. Illinois J. Math. 579–591 (1984)Zaanen, A.C.: Integration. North-Holland Publishing Company, Amsterdam-New York (1967)Zaanen, A.C.: Riesz Spaces II. North-Holland Publishing Company, Amsterdam (1983

    A new foundational crisis in mathematics, is it really happening?

    Full text link
    The article reconsiders the position of the foundations of mathematics after the discovery of HoTT. Discussion that this discovery has generated in the community of mathematicians, philosophers and computer scientists might indicate a new crisis in the foundation of mathematics. By examining the mathematical facts behind HoTT and their relation with the existing foundations, we conclude that the present crisis is not one. We reiterate a pluralist vision of the foundations of mathematics. The article contains a short survey of the mathematical and historical background needed to understand the main tenets of the foundational issues.Comment: Final versio

    Maharam-type kernel representation for operators with a trigonometric domination

    Full text link
    [EN] Consider a linear and continuous operator T between Banach function spaces. We prove that under certain requirements an integral inequality for T is equivalent to a factorization of T through a specific kernel operator: in other words, the operator T has what we call a Maharam-type kernel representation. In the case that the inequality provides a domination involving trigonometric functions, a special factorization through the Fourier operator is given. We apply this result to study the problem that motivates the paper: the approximation of functions in L2[0, 1] by means of trigonometric series whose Fourier coefficients are given by weighted trigonometric integrals.This research has been supported by MTM2016-77054-C2-1-P (Ministerio de Economia, Industria y Competitividad, Spain).Sánchez Pérez, EA. (2017). Maharam-type kernel representation for operators with a trigonometric domination. Aequationes Mathematicae. 91(6):1073-1091. https://doi.org/10.1007/s00010-017-0507-6S10731091916Calabuig, J.M., Delgado, O., Sánchez Pérez, E.A.: Generalized perfect spaces. Indag. Math. 19(3), 359–378 (2008)Calabuig, J.M., Delgado, O., Sánchez Pérez, E.A.: Factorizing operators on Banach function spaces through spaces of multiplication operators. J. Math. Anal. Appl. 364, 88–103 (2010)Delgado, O., Sánchez Pérez, E.A.: Strong factorizations between couples of operators on Banach function spaces. J. Convex Anal. 20(3), 599–616 (2013)Dodds, P.G., Huijsmans, C.B., de Pagter, B.: Characterizations of conditional expectation type operators. Pacific J. Math. 141(1), 55–77 (1990)Flores, J., Hernández, F.L., Tradacete, P.: Domination problems for strictly singular operators and other related classes. Positivity 15(4), 595–616 (2011). 2011Fremlin, D.H.: Tensor products of Banach lattices. Math. Ann. 211, 87–106 (1974)Hu, G.: Weighted norm inequalities for bilinear Fourier multiplier operators. Math. Ineq. Appl. 18(4), 1409–1425 (2015)Halmos, P., Sunder, V.: Bounded Integral Operators on L2 L^2 L 2 Spaces. Springer, Berlin (1978)Kantorovitch, L., Vulich, B.: Sur la représentation des opérations linéaires. Compositio Math. 5, 119–165 (1938)Kolwicz, P., Leśnik, K., Maligranda, L.: Pointwise multipliers of Calderón- Lozanovskii spaces. Math. Nachr. 286, 876–907 (2013)Kolwicz, P., Leśnik, K., Maligranda, L.: Pointwise products of some Banach function spaces and factorization. J. Funct. Anal. 266(2), 616–659 (2014)Kuo, W.-C., Labuschagne, C.C.A., Watson, B.A.: Conditional expectations on Riesz spaces. J. Math. Anal. Appl. 303, 509–521 (2005)Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces II. Springer, Berlin (1979)Maharam, D.: The representation of abstract integrals. Trans. Am. Math. Soc. 75, 154–184 (1953)Maharam, D.: On kernel representation of linear operators. Trans. Am. Math. Soc. 79, 229–255 (1955)Maligranda, L., Persson, L.E.: Generalized duality of some Banach function spaces. Indag. Math. 51, 323–338 (1989)Neugebauer, C.J.: Weighted norm inequalities for averaging operators of monotone functions. Publ. Mat. 35, 429–447 (1991)Okada, S., Ricker, W.J., Sánchez Pérez, E.A.: Optimal Domain and Integral Extension of Operators Acting in Function Spaces. Operator Theory: Adv. Appl., vol. 180. Birkhäuser, Basel (2008)Rota, G.C.: On the representation of averaging operators. Rend. Sem. Mat. Univ. Padova. 30, 52–64 (1960)Sánchez Pérez, E.A.: Factorization theorems for multiplication operators on Banach function spaces. Integr. Equ. Oper. Theory 80(1), 117–135 (2014)Schep, A.R.: Factorization of positive multilinear maps. Ill. J. Math. 28(4), 579–591 (1984)Schep, A.R.: Products and factors of Banach function spaces. Positivity 14(2), 301–319 (2010

    Double Beta Decay: Historical Review of 75 Years of Research

    Full text link
    Main achievements during 75 years of research on double beta decay have been reviewed. The existing experimental data have been presented and the capabilities of the next-generation detectors have been demonstrated.Comment: 25 pages, typos adde

    Product factorability of integral bilinear operators on Banach function spaces

    Full text link
    [EN] This paper deals with bilinear operators acting in pairs of Banach function spaces that factor through the pointwise product. We find similar situations in different contexts of the functional analysis, including abstract vector lattices¿orthosymmetric maps, C¿-algebras¿zero product preserving operators, and classical and harmonic analysis¿integral bilinear operators. Bringing together the ideas of these areas, we show new factorization theorems and characterizations by means of norm inequalities. The objective of the paper is to apply these tools to provide new descriptions of some classes of bilinear integral operators, and to obtain integral representations for abstract classes of bilinear maps satisfying certain domination properties.The first author was supported by TUBITAK-The Scientific and Technological Research Council of Turkey, Grant No. 2211/E. The second author was supported by Ministerio de Economia y Competitividad (Spain) and FEDER, Grant MTM2016-77054-C2-1-P.Erdogan, E.; Sánchez Pérez, EA.; Gok, O. (2019). Product factorability of integral bilinear operators on Banach function spaces. Positivity. 23(3):671-696. https://doi.org/10.1007/s11117-018-0632-zS671696233Abramovich, Y.A., Kitover, A.K.: Inverses of Disjointness Preserving Operators. American Mathematical Society, Providence (2000)Abramovich, Y.A., Wickstead, A.W.: When each continuous operator is regular II. Indag. Math. (N.S.) 8(3), 281–294 (1997)Alaminos, J., Brešar, M., Extremera, J., Villena, A.R.: Maps preserving zero products. Studia Math. 193(2), 131–159 (2009)Alaminos, J., Brešar, M., Extremera, J., Villena, A.R.: On bilinear maps determined by rank one idempotents. Linear Algebra Appl. 432, 738–743 (2010)Alaminos, J., Extremera, J., Villena, A.R.: Orthogonality preserving linear maps on group algebras. Math. Proc. Camb. Philos. Soc. 158, 493–504 (2015)Ben Amor, F.: On orthosymmetric bilinear maps. Positivity 14, 123–134 (2010)Astashkin, S.V., Maligranda, L.: Structure of Cesàro function spaces: a survey. Banach Center Publ. 102, 13–40 (2014)Beckenstein, E., Narici, L.: A non-Archimedean Stone–Banach theorem. Proc. Am. Math. Soc. 100(2), 242–246 (1987)Bu, Q., Buskes, G., Kusraev, A.G.: Bilinear maps on products of vector lattices: a survey. In: Boulabiar, K., Buskes, G., Triki, A. (eds.) Positivity: Trends in Mathematics, pp. 97–126. Springer, Birkhuser (2007)Buskes, G., van Rooij, A.: Almost f-algebras: commutativity and Cauchy–Schwarz inequality. Positivity 4, 227–231 (2000)Buskes, G., van Rooij, A.: Squares of Riesz spaces. Rocky Mt. J. Math. 31(1), 45–56 (2001)Calabuig, J.M., Delgado, O., Sánchez Pérez, E.A.: Generalized perfect spaces. Indag. Math. (N.S.) 19(3), 359–378 (2008)Calderón, A.P.: Intermediate spaces and interpolation, the complex method. Studia Math. 24, 113–190 (1964)Defant, A.: Variants of the Maurey-Rosenthal theorem for quasi Köthe function spaces. Positivity 5, 153–175 (2001)Delgado Garrido, O., Sánchez Pérez, E.A.: Strong factorizations between couples of operators on Banach function spaces. J. Convex Anal. 20(3), 599–616 (2013)Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators, vol. 43. Cambridge University Press, Cambridge (1995)Erdoğan, E., Calabuig, J.M., Sánchez Pérez, E.A.: Convolution-continuous bilinear operators acting in Hilbert spaces of integrable functions. Ann. Funct. Anal. 9(2), 166–179 (2018)Diestel, J., Uhl, J.J.: Vector Measures. American Mathematical Society, Providence (1977)Fremlin, D.H.: Tensor products of Archimedean vector lattices. Am. J. Math. 94, 778–798 (1972)Gillespie, T.A.: Factorization in Banach function spaces. Nederl. Akad. Wetensch. Indag. Math. 43(3), 287–300 (1981)Grafakos, L., Li, X.: Uniform bounds for the bilinear Hilbert transforms I. Ann. Math. 159, 889–933 (2004)Kantorovich, K.L., Akilov, G.P.: Functional Analysis, Nauka, Moscow 1977 (Russian). English transl. Pergamon Press, Oxford, Elmsford, New York (1982)Kolwicz, P., Leśnik, K., Maligranda, L.: Pointwise products of some Banach function spaces and factorization. J. Funct. Anal. 266(2), 616–659 (2014)Kolwicz, P., Leśnik, K.: Topological and geometrical structure of Calderón–Lozanovskii construction. Math. Inequal. Appl. 13(1), 175–196 (2010)Kühn, B.: Banachverbände mit ordnungsstetiger dualnorm. Math. Z. 167(3), 271–277 (1979)Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces II: Function Spaces, vol. 97. Springer, Berlin (1979)Lozanovskii, G.Ya.: On some Banach lattices. Sibirsk. Mat. Zh. 10, 584-599 (1969)(Russian)English transl. in Siberian Math. J. 10(3), 419-431 (1969)Maligranda, L., Persson, L.E.: Generalized duality of some Banach function spaces. Nederl. Akad. Wetensch. Indag. Math. 51(3), 323–338 (1989)Okada, S., Ricker, W., Sánchez Pérez, E.A.: Optimal domain and integral extension of operators. Oper. Theory Adv. Appl. Birkhäuser/Springer 180 (2008)Ryan, R.: Introduction to Tensor Product of Banach Spaces. Springer, London (2002)Sánchez Pérez, E.A., Werner, D.: Slice continuity for operators and the Daugavet property for bilinear maps. Funct. Approx. Comment. Math. 50(2), 251–269 (2014)Schep, A.R.: Products and factors of Banach function spaces. Positivity 14(2), 301–319 (2010)Villarroya, F.: Bilinear multipliers on Lorentz spaces. Czechoslov. Math. J. 58(4), 1045–1057 (2008
    • …
    corecore