230 research outputs found
Cell migration along the lateral cortical stream to the developing basal telencephalic limbic system
Monitoring phagocytic uptake of amyloid beta into glial cell lysosomes in real time
Phagocytosis by glial cells is essential to regulate brain function during health and disease. Therapies for Alzheimer's disease (AD) have primarily focused on targeting antibodies to amyloid β (Aβ) or inhibitng enzymes that make it, and while removal of Aβ by phagocytosis is protective early in AD it remains poorly understood. Impaired phagocytic function of glial cells during later stages of AD likely contributes to worsened disease outcome, but the underlying mechanisms of how this occurs remain unknown. We have developed a human Aβ_{1-42} analogue (Aβ^{pH}) that exhibits green fluorescence upon internalization into the acidic organelles of cells but is non-fluorescent at physiological pH. This allowed us to image, for the first time, glial uptake of Aβ^{pH} in real time in live animals. We find that microglia phagocytose more AβpH than astrocytes in culture, in brain slices and in vivo. Aβ^{pH} can be used to investigate the phagocytic mechanisms responsible for removing Aβ from the extracellular space, and thus could become a useful tool to study Aβ clearance at different stages of AD
The effect of walnut intake on factors related to prostate and vascular health in older men
<p>Abstract</p> <p>Background</p> <p>Tocopherols may protect against prostate cancer and cardiovascular disease (CVD).</p> <p>Methods</p> <p>We assessed the effect of walnuts, which are rich in tocopherols, on markers of prostate and vascular health in men at risk for prostate cancer. We conducted an 8-week walnut supplement study to examine effects of walnuts on serum tocopherols and prostate specific antigen (PSA). Subjects (<it>n </it>= 21) consumed (in random order) their usual diet +/- a walnut supplement (75 g/d) that was isocalorically incorporated in their habitual diets. Prior to the supplement study, 5 fasted subjects participated in an acute timecourse experiment and had blood taken at baseline and 1, 2, 4, and 8 h after consuming walnuts (75 g).</p> <p>Results</p> <p>During the timecourse experiment, triglycerides peaked at 4 h, and gamma-tocopherol (γ-T) increased from 4 to 8 h. Triglyceride – normalized γ-T was two-fold higher (<it>P </it>= 0.01) after 8 versus 4 h. In the supplement study, change from baseline was +0.83 ± 0.52 μmol/L for γ-T, -2.65 ± 1.30 μmol/L for alpha-tocopherol (α-T) and -3.49 ± 1.99 for the tocopherol ratio (α-T: γ-T). A linear mixed model showed that, although PSA did not change, the ratio of free PSA:total PSA increased and approached significance (P = 0.07). The α-T: γ-T ratio decreased significantly (<it>P </it>= 0.01), partly reflecting an increase in serum γ-T, which approached significance (<it>P </it>= 0.08).</p> <p>Conclusion</p> <p>The significant decrease in the α-T: γ-T ratio with an increase in serum γ-T and a trend towards an increase in the ratio of free PSA:total PSA following the 8-week supplement study suggest that walnuts may improve biomarkers of prostate and vascular status.</p
Sonic hedgehog expressing and responding cells generate neuronal diversity in the medial amygdala
<p>Abstract</p> <p>Background</p> <p>The mammalian amygdala is composed of two primary functional subdivisions, classified according to whether the major output projection of each nucleus is excitatory or inhibitory. The posterior dorsal and ventral subdivisions of the medial amygdala, which primarily contain inhibitory output neurons, modulate specific aspects of innate socio-sexual and aggressive behaviors. However, the development of the neuronal diversity of this complex and important structure remains to be fully elucidated.</p> <p>Results</p> <p>Using a combination of genetic fate-mapping and loss-of-function analyses, we examined the contribution and function of <it>Sonic hedgehog </it>(<it>Shh</it>)-expressing and <it>Shh</it>-responsive (<it>Nkx2-1</it><sup>+ </sup>and <it>Gli1</it><sup>+</sup>) neurons in the medial amygdala. Specifically, we found that <it>Shh- </it>and <it>Nkx2-1-</it>lineage cells contribute differentially to the dorsal and ventral subdivisions of the postnatal medial amygdala. These <it>Shh</it>- and <it>Nkx2-1</it>-lineage neurons express overlapping and non-overlapping inhibitory neuronal markers, such as Calbindin, FoxP2, nNOS and Somatostatin, revealing diverse fate contributions in discrete medial amygdala nuclear subdivisions. Electrophysiological analysis of the <it>Shh</it>-derived neurons additionally reveals an important functional diversity within this lineage in the medial amygdala. Moreover, inducible <it>Gli1<sup>CreER(T2) </sup></it>temporal fate mapping shows that early-generated progenitors that respond to <it>Shh </it>signaling also contribute to medial amygdala neuronal diversity. Lastly, analysis of <it>Nkx2-1 </it>mutant mice demonstrates a genetic requirement for <it>Nkx2-1 </it>in inhibitory neuronal specification in the medial amygdala distinct from the requirement for <it>Nkx2-1 </it>in cerebral cortical development.</p> <p>Conclusions</p> <p>Taken together, these data reveal a differential contribution of <it>Shh-</it>expressing and <it>Shh</it>-responding cells to medial amygdala neuronal diversity as well as the function of <it>Nkx2-1 </it>in the development of this important limbic system structure.</p
Exponential Distribution of Locomotion Activity in Cell Cultures
In vitro velocities of several cell types have been measured using computer
controlled video microscopy, which allowed to record the cells' trajectories
over several days. On the basis of our large data sets we show that the
locomotion activity displays a universal exponential distribution. Thus, motion
resulting from complex cellular processes can be well described by an
unexpected, but very simple distribution function. A simple phenomenological
model based on the interaction of various cellular processes and finite ATP
production rate is proposed to explain these experimental results.Comment: 4 pages, 3 figure
Single-cell delineation of lineage and genetic identity in the mouse brain
During neurogenesis, mitotic progenitor cells lining the ventricles ofthe embryonic mouse brain undergo their final rounds of cell division, giving rise to a wide spectrum of postmitotic neurons and glia(1,2). The link between developmental lineage and cell-type diversity remains an open question. Here we used massively parallel tagging of progenitors to track clonal relationships and transcriptomic signatures during mouse forebrain development. We quantified clonal divergence and convergence across all major cell classes postnatally, and found diverse types of GABAergic neuron that share a common lineage. Divergence of GABAergic clones occurred during embryogenesis upon cell-cycle exit, suggesting that differentiation into subtypes is initiated as a lineage-dependent process at the progenitor cell level
A developmental cell-type switch in cortical interneurons leads to a selective defect in cortical oscillations
The cellular diversity of interneurons in the neocortex is thought to reflect subtype-specific roles of cortical inhibition. Here we ask whether perturbations to two subtypes-parvalbumin-positive (PV+) and somatostatin-positive (SST+) interneurons-can be compensated for with respect to their contributions to cortical development. We use a genetic cell fate switch to delete both PV+ and SST+ interneurons selectively in cortical layers 2-4 without numerically changing the total interneuron population. This manipulation is compensated for at the level of synaptic currents and receptive fields (RFs) in the somatosensory cortex. By contrast, we identify a deficit in inhibitory synchronization in vitro and a large reduction in cortical gamma oscillations in vivo. This reveals that, while the roles of inhibition in establishing cortical inhibitory/excitatory balance and RFs can be subserved by multiple interneuron subtypes, gamma oscillations depend on cellular properties that cannot be compensated for-likely, the fast signalling properties of PV+ interneurons
Live Imaging at the Onset of Cortical Neurogenesis Reveals Differential Appearance of the Neuronal Phenotype in Apical versus Basal Progenitor Progeny
The neurons of the mammalian brain are generated by progenitors dividing either at the apical surface of the ventricular zone (neuroepithelial and radial glial cells, collectively referred to as apical progenitors) or at its basal side (basal progenitors, also called intermediate progenitors). For apical progenitors, the orientation of the cleavage plane relative to their apical-basal axis is thought to be of critical importance for the fate of the daughter cells. For basal progenitors, the relationship between cell polarity, cleavage plane orientation and the fate of daughter cells is unknown. Here, we have investigated these issues at the very onset of cortical neurogenesis. To directly observe the generation of neurons from apical and basal progenitors, we established a novel transgenic mouse line in which membrane GFP is expressed from the beta-III-tubulin promoter, an early pan-neuronal marker, and crossed this line with a previously described knock-in line in which nuclear GFP is expressed from the Tis21 promoter, a pan-neurogenic progenitor marker. Mitotic Tis21-positive basal progenitors nearly always divided symmetrically, generating two neurons, but, in contrast to symmetrically dividing apical progenitors, lacked apical-basal polarity and showed a nearly randomized cleavage plane orientation. Moreover, the appearance of beta-III-tubulin–driven GFP fluorescence in basal progenitor-derived neurons, in contrast to that in apical progenitor-derived neurons, was so rapid that it suggested the initiation of the neuronal phenotype already in the progenitor. Our observations imply that (i) the loss of apical-basal polarity restricts neuronal progenitors to the symmetric mode of cell division, and that (ii) basal progenitors initiate the expression of neuronal phenotype already before mitosis, in contrast to apical progenitors
- …