173 research outputs found

    Integrated strategies to prevent intradialytic hypotension: research protocol of the DialHypot study, a prospective randomised clinical trial in hypotension-prone haemodialysis patients

    Get PDF
    INTRODUCTION: In patients on maintenance haemodialysis (HD), intradialytic hypotension (IDH) is a clinical problem that nephrologists and dialysis nurses face daily in their clinical routine. Despite the technological advances in the field of HD, the incidence of hypotensive events occurring during a standard dialytic treatment is still very high. Frequently recurring hypotensive episodes during HD sessions expose patients not only to severe immediate complications but also to a higher mortality risk in the medium term. Various strategies aimed at preventing IDH are currently available, but there is lack of conclusive data on more integrated approaches combining different interventions. METHODS AND ANALYSIS: This is a prospective, randomised, open-label, crossover trial (each subject will be used as his/her own control) that will be performed in two distinct phases, each of which is divided into several subphases. In the first phase, 27 HD sessions for each patient will be used, and will be aimed at the validation of a new ultrafiltration (UF) profile, designed with an ascending/descending shape, and a standard dialysate sodium concentration. In the second phase, 33 HD sessions for each patient will be used and will be aimed at evaluating the combination of different UF and sodium profiling strategies through individualised dialysate sodium concentration. ETHICS AND DISSEMINATION: The trial protocol has been reviewed and approved by the local Institutional Ethics Committee (Comitato Etico AVEN, prot. 43391 22.10.19). The results of the trial will be presented at local and international conferences and submitted for publication to a peer-reviewed journal. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov Registry (NCT03949088)

    A balanced formula of essential amino acids promotes brain mitochondrial biogenesis and protects neurons from ischemic insult

    Get PDF
    Mitochondrial dysfunction plays a key role in the aging process, and aging is a strong risk factor for neurodegenerative diseases or brain injury characterized by impairment of mitochondrial function. Among these, ischemic stroke is one of the leading causes of death and permanent disability worldwide. Pharmacological approaches for its prevention and therapy are limited. Although non-pharmacological interventions such as physical exercise, which promotes brain mitochondrial biogenesis, have been shown to exert preventive effects against ischemic stroke, regular feasibility is complex in older people, and nutraceutical strategies could be valuable alternatives. We show here that dietary supplementation with a balanced essential amino acid mixture (BCAAem) increased mitochondrial biogenesis and the endogenous antioxidant response in the hippocampus of middle-aged mice to an extent comparable to those elicited by treadmill exercise training, suggesting BCAAem as an effective exercise mimetic on brain mitochondrial health and disease prevention. In vitro BCAAem treatment directly exerted mitochondrial biogenic effects and induced antioxidant enzyme expression in primary mouse cortical neurons. Further, exposure to BCAAem protected cortical neurons from the ischemic damage induced by an in vitro model of cerebral ischemia (oxygen-glucose deprivation, OGD). BCAAem-mediated protection against OGD was abolished in the presence of rapamycin, Torin-1, or L-NAME, indicating the requirement of both mTOR and eNOS signaling pathways in the BCAAem effects. We propose BCAAem supplementation as an alternative to physical exercise to prevent brain mitochondrial derangements leading to neurodegeneration and as a nutraceutical intervention aiding recovery after cerebral ischemia in conjunction with conventional drugs

    Real-time imaging of polymersome nanoparticles in zebrafish embryos engrafted with melanoma cancer cells: Localization, toxicity and treatment analysis

    Get PDF
    BACKGROUND: The developing zebrafish is an emerging tool in nanomedicine, allowing non-invasive live imaging of the whole animal at higher resolution than is possible in the more commonly used mouse models. In addition, several transgenic fish lines are available endowed with selected cell types expressing fluorescent proteins; this allows nanoparticles to be visualized together with host cells. METHODS: Here, we introduce the zebrafish neural tube as a robust injection site for cancer cells, excellently suited for high resolution imaging. We use light and electron microscopy to evaluate cancer growth and to follow the fate of intravenously injected nanoparticles. FINDINGS: Fluorescently labelled mouse melanoma B16 cells, when injected into this structure proliferated rapidly and stimulated angiogenesis of new vessels. In addition, macrophages, but not neutrophils, selectively accumulated in the tumour region. When injected intravenously, nanoparticles made of Cy5-labelled poly(ethylene glycol)-block-poly(2-(diisopropyl amino) ethyl methacrylate) (PEG-PDPA) selectively accumulated in the neural tube cancer region and were seen in individual cancer cells and tumour associated macrophages. Moreover, when doxorubicin was released from PEG-PDPA, in a pH dependant manner, these nanoparticles could strongly reduce toxicity and improve the treatment outcome compared to the free drug in zebrafish xenotransplanted with mouse melanoma B16 or human derived melanoma cells. INTERPRETATION: The zebrafish has the potential of becoming an important intermediate step, before the mouse model, for testing nanomedicines against patient-derived cancer cells. FUNDING: We received funding from the Norwegian research council and the Norwegian cancer society

    Conservative surgery with and without radiotherapy in elderly patients with early-stage breast cancer: a prospective randomised multicentre trial.

    Get PDF
    ABSTRACT Breast conserving therapy (BCT) including postoperative irradiation of the remaining breast tissue is generally accepted as the best treatment for the majority of patients with early-stage breast cancer. The question is whether there is a necessity for irradiating all patients. Between 2001 and 2005, 749 women aged 55–75 years with infiltrating breast carcinoma were randomly assigned to breast conservative surgery, with or without radiotherapy (RT), to evaluate the incidence of in-breast recurrence (IBR). After 5 years of median follow-up, the cumulative incidence of IBR was 2.5% in the surgery-only arm and 0.7% in the surgery plus RT arm. There are no differences in terms of overall survival and distant disease-free survival. The preliminary evaluation suggests that breast irradiation after conservative surgery can be avoided without exposing these patients to an increased risk of distant-disease recurrence. Prolonged follow-up will further clarify the possible risks and late sequelae potentially induced by breast RT

    The zebrafish embryo as an in vivo model for screening nanoparticle-formulated lipophilic anti-tuberculosis compounds.

    Get PDF
    With the increasing emergence of drug-resistant Mycobacterium tuberculosis strains, new and effective antibiotics against tuberculosis (TB) are urgently needed. However, the high frequency of poorly water-soluble compounds among hits in high-throughput drug screening (HTS) campaigns is a major obstacle in drug discovery. Moreover, in vivo testing using conventional animal TB models such as mice is time-consuming and costly, and represents a major bottleneck in lead compound discovery and development. Here, we report the use of the zebrafish embryo TB model, to evaluate the in vivo toxicity and efficacy of five poorly water-soluble nitronaphthofuran derivatives, which were recently identified to possess anti-tuberculosis activity in vitro. To aid solubilization compounds were formulated in biocompatible polymeric micelles (PM). Three of the five PM-formulated nitronaphthofuran derivatives showed low toxicity in vivo, significantly reduced bacterial burden and improved survival in infected zebrafish embryos. We propose the zebrafish embryo TB-model as a quick and sensitive tool for evaluating in vivo toxicity and efficacy of new anti-TB compounds during early stages of drug development. Thus, this model is well suited to pinpoint promising compounds for further development.Drug Delivery Technolog

    Lymphatic endothelial cells are a replicative niche for Mycobacterium tuberculosis

    Get PDF
    In extrapulmonary tuberculosis, the most common site of infection is within the lymphatic system, and there is growing recognition that lymphatic endothelial cells (LECs) are involved in immune function. Here, we identified LECs, which line the lymphatic vessels, as a niche for Mycobacterium tuberculosis in the lymph nodes of patients with tuberculosis. In cultured primary human LECs (hLECs), we determined that M. tuberculosis replicates both in the cytosol and within autophagosomes, but the bacteria failed to replicate when the virulence locus RD1 was deleted. Activation by IFN-Îł induced a cell-autonomous response in hLECs via autophagy and NO production that restricted M. tuberculosis growth. Thus, depending on the activation status of LECs, autophagy can both promote and restrict replication. Together, these findings reveal a previously unrecognized role for hLECs and autophagy in tuberculosis pathogenesis and suggest that hLECs are a potential niche for M. tuberculosis that allows establishment of persistent infection in lymph nodes

    On the relations between historical epistemology and students’ conceptual developments in mathematics

    Get PDF
    There is an ongoing discussion within the research field of mathematics education regarding the utilization of the history of mathematics within mathematics education. In this paper we consider problems that may emerge when the historical epistemology of mathematics is paralleled to students’ conceptual developments in mathematics. We problematize this attempt to link the two fields on the basis of Grattan-Guinness’ distinction between “history” and “heritage”. We argue that when parallelism claims are made, history and heritage are often mixed up, which is problematic since historical mathematical definitions must be interpreted in its proper historical context and conceptual framework. Furthermore, we argue that cultural and local ideas vary at different time periods, influencing conceptual developments in different directions regardless of whether historical or individual developments are considered, and thus it may be problematic to uncritically assume a platonic perspective. Also, we have to take into consideration that an average student of today and great mathematicians of the past are at different cognitive levels

    Modular synthesis of semiconducting graft co-polymers to achieve ‘clickable’ fluorescent nanoparticles with long circulation and specific cancer targeting

    Get PDF
    Semiconducting polymer nanoparticles (SPNs) are explored for applications in cancer theranostics because of their high absorption coefficients, photostability, and biocompatibility. However, SPNs are susceptible to aggregation and protein fouling in physiological conditions, which can be detrimental for in vivo applications. Here, a method for achieving colloidally stable and low-fouling SPNs is described by grafting poly(ethylene glycol) (PEG) onto the backbone of the fluorescent semiconducting polymer, poly(9,9â€Č-dioctylfluorene-5-fluoro-2,1,3-benzothiadiazole), in a simple one-step substitution reaction, postpolymerization. Further, by utilizing azide-functionalized PEG, anti-human epidermal growth factor receptor 2 (HER2) antibodies, antibody fragments, or affibodies are site-specifically “clicked” onto the SPN surface, which allows the functionalized SPNs to specifically target HER2-positive cancer cells. In vivo, the PEGylated SPNs are found to have excellent circulation efficiencies in zebrafish embryos for up to seven days postinjection. SPNs functionalized with affibodies are then shown to be able to target HER2 expressing cancer cells in a zebrafish xenograft model. The covalent PEGylated SPN system described herein shows great potential for cancer theranostics

    Π-Π interactions stabilize PeptoMicelle-based formulations of Pretomanid derivatives leading to promising therapy against tuberculosis in zebrafish and mouse models

    Get PDF
    Tuberculosis is the deadliest bacterial disease globally, threatening the lives of millions every year. New antibiotic therapies that can shorten the duration of treatment, improve cure rates, and impede the development of drug resistance are desperately needed. Here, we used polymeric micelles to encapsulate four second-generation derivatives of the antitubercular drug pretomanid that had previously displayed much better in vivo activity against Mycobacterium tuberculosis than pretomanid itself. Because these compounds were relatively hydrophobic and had limited bioavailability, we expected that their micellar formulations would overcome these limitations, reduce toxicities, and improve therapeutic outcomes. The polymeric micelles were based on polypept(o)ides (PeptoMicelles) and were stabilized in their hydrophobic core by π-π interactions, allowing the efficient encapsulation of aromatic pretomanid derivatives. The stability of these π-π-stabilized PeptoMicelles was demonstrated in water, blood plasma, and lung surfactant by fluorescence cross-correlation spectroscopy and was further supported by prolonged circulation times of several days in the vasculature of zebrafish larvae. The most efficacious PeptoMicelle formulation tested in the zebrafish larvae infection model almost completely eradicated the bacteria at non-toxic doses. This lead formulation was further assessed against Mycobacterium tuberculosis in the susceptible C3HeB/FeJ mouse model, which develops human-like necrotic granulomas. Following intravenous administration, the drug-loaded PeptoMicelles significantly reduced bacterial burden and inflammatory responses in the lungs and spleens of infected mice.Drug Delivery Technolog
    • 

    corecore