8,502 research outputs found

    High density limit of the two-dimensional electron liquid with Rashba spin-orbit coupling

    Full text link
    We discuss by analytic means the theory of the high-density limit of the unpolarized two-dimensional electron liquid in the presence of Rashba or Dresselhaus spin-orbit coupling. A generalization of the ring-diagram expansion is performed. We find that in this regime the spin-orbit coupling leads to small changes of the exchange and correlation energy contributions, while modifying also, via repopulation of the momentum states, the noninteracting energy. As a result, the leading corrections to the chirality and total energy of the system stem from the Hartree-Fock contributions. The final results are found to be vanishing to lowest order in the spin-orbit coupling, in agreement with a general property valid to every order in the electron-electron interaction. We also show that recent quantum Monte Carlo data in the presence of Rashba spin-orbit coupling are well understood by neglecting corrections to the exchange-correlation energy, even at low density values.Comment: 11 pages, 5 figure

    Exchange energy and generalized polarization in the presence of spin-orbit coupling in two dimensions

    Get PDF
    We discuss a general form of the exchange energy for a homogeneous system of interacting electrons in two spatial dimensions which is particularly suited in the presence of a generic spin-orbit interaction. The theory is best formulated in terms of a generalized fractional electronic polarization. Remarkably we find that a net generalized polarization does not necessarily translate into an increase in the magnitude of the exchange energy, a fact that in turn favors unpolarized states. Our results account qualitatively for the findings of recent experimental investigations

    Anomalous Rashba spin splitting in two-dimensional hole systems

    Full text link
    It has long been assumed that the inversion asymmetry-induced Rashba spin splitting in two-dimensional (2D) systems at zero magnetic field is proportional to the electric field that characterizes the inversion asymmetry of the confining potential. Here we demonstrate, both theoretically and experimentally, that 2D heavy hole systems in accumulation layer-like single heterostructures show the opposite behavior, i.e., a decreasing, but nonzero electric field results in an increasing Rashba coefficient.Comment: 4 pages, 3 figure

    Generation of spin currents and spin densities in systems with reduced symmetry

    Full text link
    We show that the spin-current response of a semiconductor crystal to an external electric field is considerably more complex than previously assumed. While in systems of high symmetry only the spin-Hall components are allowed, in systems of lower symmetry other non-spin-Hall components may be present. We argue that, when spin-orbit interactions are present only in the band structure, the distinction between intrinsic and extrinsic contributions to the spin current is not useful. We show that the generation of spin currents and that of spin densities in an electric field are closely related, and that our general theory provides a systematic way to distinguish between them in experiment. We discuss also the meaning of vertex corrections in systems with spin-orbit interactions.Comment: 4 page

    Spin Density Matrix of Spin-3/2 Hole Systems

    Full text link
    For hole systems with an effective spin j=3/2, we present an invariant decomposition of the spin density matrix that can be interpreted as a multipole expansion. The charge density corresponds to the monopole moment and the spin polarization due to a magnetic field corresponds to a dipole moment while heavy hole-light hole splitting can be interpreted as a quadrupole moment. For quasi two-dimensional hole systems in the presence of an in-plane magnetic field B the spin polarization is a higher-order effect that is typically much smaller than one even if the minority spin subband is completely depopulated. On the other hand, the field B can induce a substantial octupole moment which is a unique feature of j=3/2 hole systems.Comment: 8 pages, 1 figure, 3 table

    First results of observations of transient pulsar SAXJ2103.5+4545 with the INTEGRAL observatory

    Full text link
    We present preliminary results of observations of X-ray pulsar SAX J2103.5+4545 with INTEGRAL observatory in Dec 2002. Maps of this sky region in energy bands 3-10, 15-40, 40-100 and 100-200 keV are presented. The source is significantly detected up to energies of ∼100\sim100 keV. The hard X-ray flux in the 15-100 energy band is variable, that could be connected with the orbital phase of the binary system. We roughly reconstructed the source spectrum using its comparison to that of Crab nebula. It is shown that the parameters of the source spectrum in 18-150 keV energy range are compatible with that obtained earlier by RXTE observatoryComment: 5 pages, 4 figures, accepted for publication in the Astronomy Letter

    Plasmon mass and Drude weight in strongly spin-orbit-coupled 2D electron gases

    Get PDF
    Spin-orbit-coupled two-dimensional electron gases (2DEGs) are a textbook example of helical Fermi liquids, i.e. quantum liquids in which spin (or pseudospin) and momentum degrees-of-freedom at the Fermi surface have a well-defined correlation. Here we study the long-wavelength plasmon dispersion and the Drude weight of archetypical spin-orbit-coupled 2DEGs. We first show that these measurable quantities are sensitive to electron-electron interactions due to broken Galileian invariance and then discuss in detail why the popular random phase approximation is not capable of describing the collective dynamics of these systems even at very long wavelengths. This work is focussed on presenting approximate microscopic calculations of these quantities based on the minimal theoretical scheme that captures the basic physics correctly, i.e. the time-dependent Hartree-Fock approximation. We find that interactions enhance the "plasmon mass" and suppress the Drude weight. Our findings can be tested by inelastic light scattering, electron energy loss, and far-infrared optical-absorption measurements.Comment: 18 pages, 11 figures, submitte

    Coherent optical transfer of Feshbach molecules to a lower vibrational state

    Full text link
    Using the technique of stimulated Raman adiabatic passage (STIRAP) we have coherently transferred ultracold 87Rb2 Feshbach molecules into a more deeply bound vibrational quantum level. Our measurements indicate a high transfer efficiency of up to 87%. As the molecules are held in an optical lattice with not more than a single molecule per lattice site, inelastic collisions between the molecules are suppressed and we observe long molecular lifetimes of about 1 s. Using STIRAP we have created quantum superpositions of the two molecular states and tested their coherence interferometrically. These results represent an important step towards Bose-Einstein condensation (BEC) of molecules in the vibrational ground state.Comment: 4 pages, 5 figure

    Invariant expansion for the trigonal band structure of graphene

    Full text link
    We present a symmetry analysis of the trigonal band structure in graphene, elucidating the transformational properties of the underlying basis functions and the crucial role of time-reversal invariance. Group theory is used to derive an invariant expansion of the Hamiltonian for electron states near the K points of the graphene Brillouin zone. Besides yielding the characteristic k-linear dispersion and higher-order corrections to it, this approach enables the systematic incorporation of all terms arising from external electric and magnetic fields, strain, and spin-orbit coupling up to any desired order. Several new contributions are found, in addition to reproducing results obtained previously within tight-binding calculations. Physical ramifications of these new terms are discussed.Comment: 10 pages, 1 figure; expanded version with more details and additional result
    • …
    corecore