78 research outputs found

    A Dedicated Promoter Drives Constitutive Expression of the Cell-Autonomous Immune Resistance GTPase, Irga6 (IIGP1) in Mouse Liver

    Get PDF
    Background: In general, immune effector molecules are induced by infection. Methodology and Principal Findings: However, strong constitutive expression of the cell-autonomous resistance GTPase, Irga6 (IIGP1), was found in mouse liver, contrasting with previous evidence that expression of this protein is exclusively dependent on induction by IFNc. Constitutive and IFNc-inducible expression of Irga6 in the liver were shown to be dependent on transcription initiated from two independent untranslated 59 exons, which splice alternatively into the long exon encoding the full-length protein sequence. Irga6 is expressed constitutively in freshly isolated hepatocytes and is competent in these cells to accumulate on the parasitophorous vacuole membrane of infecting Toxoplasma gondii tachyzoites. Conclusions and Significance: The role of constitutive hepatocyte expression of Irga6 in resistance to parasites invading from the gut via the hepatic portal system is discussed

    MicroRNA Profiling during Cardiomyocyte-Specific Differentiation of Murine Embryonic Stem Cells Based on Two Different miRNA Array Platforms

    Get PDF
    MicroRNA (miRNA) plays a critical role in a wide variety of biological processes. Profiling miRNA expression during differentiation of embryonic stem cells will help to understand the regulation pathway of differentiation, which in turn may elucidate disease mechanisms. The identified miRNAs could then serve as a new group of possible therapeutic targets. In the present paper, miRNA expression profiles were determined during cardiomyocyte-specific differentiation and maturation of murine embryonic stem (ES) cells. For this purpose a homogeneous cardiomyocyte population was generated from a transgenic murine ES cell line. Two high throughput array platforms (Affymetrix and Febit) were used for miRNA profiling in order to compare the effect of the platforms on miRNA profiling as well as to increase the validity of target miRNA identification. Four time points (i.e. day 0, day 12, day 19 and day 26) were chosen for the miRNA profiling study, which corresponded to different stages during cardiomyocyte-specific differentiation and maturation. Fifty platform and pre-processing method-independent miRNAs were identified as being regulated during the differentiation and maturation processes. The identification of these miRNAs is an important step for characterizing and understanding the events involved in cardiomyocyte-specific differentiation of ES cells and may also highlight candidate target molecules for therapeutic purposes

    Hypoxic gene expression in chronic hepatitis B virus infected patients is not observed in state-of-the-art in vitro and mouse infection models

    Get PDF
    Hepatitis B virus (HBV) is the leading cause of hepatocellular carcinoma (HCC) worldwide. The prolyl hydroxylase domain (PHD)-hypoxia inducible factor (HIF) pathway is a key mammalian oxygen sensing pathway and is frequently perturbed by pathological states including infection and inflammation. We discovered a significant upregulation of hypoxia regulated gene transcripts in patients with chronic hepatitis B (CHB) in the absence of liver cirrhosis. We used state-of-the-art in vitro and in vivo HBV infection models to evaluate a role for HBV infection and the viral regulatory protein HBx to drive HIF-signalling. HBx had no significant impact on HIF expression or associated transcriptional activity under normoxic or hypoxic conditions. Furthermore, we found no evidence of hypoxia gene expression in HBV de novo infection, HBV infected human liver chimeric mice or transgenic mice with integrated HBV genome. Collectively, our data show clear evidence of hypoxia gene induction in CHB that is not recapitulated in existing models for acute HBV infection, suggesting a role for inflammatory mediators in promoting hypoxia gene expression

    Natural Single-Nucleosome Epi-Polymorphisms in Yeast

    Get PDF
    Epigenomes commonly refer to the sequence of presence/absence of specific epigenetic marks along eukaryotic chromatin. Complete histone-borne epigenomes have now been described at single-nucleosome resolution from various organisms, tissues, developmental stages, or diseases, yet their intra-species natural variation has never been investigated. We describe here that the epigenomic sequence of histone H3 acetylation at Lysine 14 (H3K14ac) differs greatly between two unrelated strains of the yeast Saccharomyces cerevisiae. Using single-nucleosome chromatin immunoprecipitation and mapping, we interrogated 58,694 nucleosomes and found that 5,442 of them differed in their level of H3K14 acetylation, at a false discovery rate (FDR) of 0.0001. These Single Nucleosome Epi-Polymorphisms (SNEPs) were enriched at regulatory sites and conserved non-coding DNA sequences. Surprisingly, higher acetylation in one strain did not imply higher expression of the relevant gene. However, SNEPs were enriched in genes of high transcriptional variability and one SNEP was associated with the strength of gene activation upon stimulation. Our observations suggest a high level of inter-individual epigenomic variation in natural populations, with essential questions on the origin of this diversity and its relevance to gene x environment interactions

    Standards of Care for the Health of Transgender and Gender Diverse People, Version 8

    Full text link
    Background: Transgender healthcare is a rapidly evolving interdisciplinary field. In the last decade, there has been an unprecedented increase in the number and visibility of transgender and gender diverse (TGD) people seeking support and gender-affirming medical treatment in parallel with a significant rise in the scientific literature in this area. The World Professional Association for Transgender Health (WPATH) is an international, multidisciplinary, professional association whose mission is to promote evidence-based care, education, research, public policy, and respect in transgender health. One of the main functions of WPATH is to promote the highest standards of health care for TGD people through the Standards of Care (SOC). The SOC was initially developed in 1979 and the last version (SOC-7) was published in 2012. In view of the increasing scientific evidence, WPATH commissioned a new version of the Standards of Care, the SOC-8. Aim: The overall goal of SOC-8 is to provide health care professionals (HCPs) with clinical guidance to assist TGD people in accessing safe and effective pathways to achieving lasting personal comfort with their gendered selves with the aim of optimizing their overall physical health, psychological well-being, and self-fulfillment. Methods: The SOC-8 is based on the best available science and expert professional consensus in transgender health. International professionals and stakeholders were selected to serve on the SOC-8 committee. Recommendation statements were developed based on data derived from independent systematic literature reviews, where available, background reviews and expert opinions. Grading of recommendations was based on the available evidence supporting interventions, a discussion of risks and harms, as well as the feasibility and acceptability within different contexts and country settings. Results: A total of 18 chapters were developed as part of the SOC-8. They contain recommendations for health care professionals who provide care and treatment for TGD people. Each of the recommendations is followed by explanatory text with relevant references. General areas related to transgender health are covered in the chapters Terminology, Global Applicability, Population Estimates, and Education. The chapters developed for the diverse population of TGD people include Assessment of Adults, Adolescents, Children, Nonbinary, Eunuchs, and Intersex Individuals, and people living in Institutional Environments. Finally, the chapters related to gender-affirming treatment are Hormone Therapy, Surgery and Postoperative Care, Voice and Communication, Primary Care, Reproductive Health, Sexual Health, and Mental Health. Conclusions: The SOC-8 guidelines are intended to be flexible to meet the diverse health care needs of TGD people globally. While adaptable, they offer standards for promoting optimal health care and guidance for the treatment of people experiencing gender incongruence. As in all previous versions of the SOC, the criteria set forth in this document for gender-affirming medical interventions are clinical guidelines; individual health care professionals and programs may modify these in consultation with the TGD person

    Mechanistic evaluation of primary human hepatocyte culture using global proteomic analysis reveals a selective dedifferentiation profile

    Get PDF
    © 2016 The Author(s)The application of primary human hepatocytes following isolation from human tissue is well accepted to be compromised by the process of dedifferentiation. This phenomenon reduces many unique hepatocyte functions, limiting their use in drug disposition and toxicity assessment. The aetiology of dedifferentiation has not been well defined, and further understanding of the process would allow the development of novel strategies for sustaining the hepatocyte phenotype in culture or for improving protocols for maturation of hepatocytes generated from stem cells. We have therefore carried out the first proteomic comparison of primary human hepatocyte differentiation. Cells were cultured for 0, 24, 72 and 168 h as a monolayer in order to permit unrestricted hepatocyte dedifferentiation, so as to reveal the causative signalling pathways and factors in this process, by pathway analysis. A total of 3430 proteins were identified with a false detection rate of <1 %, of which 1117 were quantified at every time point. Increasing numbers of significantly differentially expressed proteins compared with the freshly isolated cells were observed at 24 h (40 proteins), 72 h (118 proteins) and 168 h (272 proteins) (p < 0.05). In particular, cytochromes P450 and mitochondrial proteins underwent major changes, confirmed by functional studies and investigated by pathway analysis. We report the key factors and pathways which underlie the loss of hepatic phenotype in vitro, particularly those driving the large-scale and selective remodelling of the mitochondrial and metabolic proteomes. In summary, these findings expand the current understanding of dedifferentiation should facilitate further development of simple and complex hepatic culture systems

    1918 les canons se taisent: retour à la paix ?

    No full text
    catalogue de l’expositioninfo:eu-repo/semantics/publishe
    • …
    corecore