5 research outputs found

    Physical Conditions in the Ionized Gas of 30 Doradus

    Full text link
    We present a mid-infrared spectroscopic data cube of the central part of 30 Doradus, observed with Spitzer's IRS and MIPS/SED mode. Aromatic dust emission features and emission lines from molecular and atomic hydrogen are detected but not particularly strong. The dominant spectral features are emission lines from moderately ionized species of argon, neon, and sulphur, which are used to determine the physical conditions in the ionized gas. The ionized gas excitation shows strong variations on parsec scales, some of which can plausibly be associated with individual hot stars. We fit the ionic line strengths with photoionization and shock models, and find that photoionization dominates in the region. The ionization parameter U traces the rim of the central bubble, as well as highlighting isolated sources of ionization, and at least one quiescent clump. The hardness of the ionizing radiation field T_rad reveals several "hot spots" that are either the result of individual very hot stars or trace the propagation of the diffuse ionizing field through the surrounding neutral cloud. Consistent with other measurements of giant molecular hydrogen regions, log(U) ranges between -3 and -0.75, and T_rad between 30000 and 85000K.Comment: 32 pages, 26 figures, ApJ accepted. A version with high-resolution images can be found at http://www.astro.virginia.edu/~ged3j/indebetouw20090125.pd

    Pahs, Ionized Gas, and Molecular Hydrogen in Brightest Cluster Galaxies of Cool Core Clusters of Galaxies

    Full text link
    We present measurements of 5-25 {\mu}m emission features of brightest cluster galaxies (BCGs) with strong optical emission lines in a sample of 9 cool-core clusters of galaxies observed with the Infrared Spectrograph on board the Spitzer Space Telescope. These systems provide a view of dusty molecular gas and star formation, surrounded by dense, X-ray emitting intracluster gas. Past work has shown that BCGs in cool-core clusters may host powerful radio sources, luminous optical emission line systems, and excess UV, while BCGs in other clusters never show this activity. In this sample, we detect polycyclic aromatic hydrocarbons (PAHs), extremely luminous, rotationally-excited molecular hydrogen line emission, forbidden line emission from ionized gas ([Ne II] and [Ne III]), and infrared continuum emission from warm dust and cool stars. We show here that these BCGs exhibit more luminous forbidden neon and H2 rotational line emission than star-forming galaxies with similar total infrared luminosities, as well as somewhat higher ratios of 70 {\mu}m / 24 {\mu}m luminosities. Our analysis suggests that while star formation processes dominate the heating of the dust and PAHs, a heating process consistent with suprathermal electron heating from the hot gas, distinct from star formation, is heating the molecular gas and contributing to the heating of the ionized gas in the galaxies. The survival of PAHs and dust suggests that dusty gas is somehow shielded from significant interaction with the X-ray gas.Comment: 27 preprint pages, 18 figures, accepted by Astrophysical Journa
    corecore