1,008 research outputs found

    The behaviour of a population of honeybees on an artificial and on a natural crop

    Get PDF
    One hundred and twelve Petri dishes filled with sugar syrup were arranged at 20 yd. intervals from each other in a meadow. Individual bees were observed to visit one chosen dish with great regularity for one or more days, provided that the supply did not become exhausted. Occasionally bees maŕked on one dish were observed to visit an adjacent dish. This occurred most frequently when the supply of syrup temporarily failed at the original site of feeding, but, even after a 3-day interruption in the syrup supply bees often returned to feed at the original site. Bees feeding at a dish full of syrup spent only a fraction of their time (about 1 min.) per visit drinking, but several times as long flying to and from the hive and delivering their load. When the supply of syrup in a dish became exhausted all the bees accustomed to visit that dishgradually accumulated there impatiently seeking for food; after some minutes they extended their radius of search, and many located another source near at hand. Thereafter they visited either the new source or the old, or both, when the syrup at the original site was replenished. The nearer such a new source was to the original one the more likely a bee was to find it; a dish 20 yd. away from the original site was quickly found despite the fact that such a second dish would seldom be visited if the syrup at the original site was constantly maintained. Bees were deterred from collecting syrup from dishes placed even partially in shade; they veryseldom worked beneath the shade of trees. There were even some indications that they prefered not to fly in the direction of shady trees. Over the range of distances covered (160-400 yd.) there were always more visitors to the nearer than to the more distant dishes. The extent of this difference, however, varied from day to day. Bees accustomed to collect syrup from the dishes farthest from the hive did not move to sites nearer home when the weather became unfavourable. There was some evidence, however, that bees working a long way away from the hive were more easily deterred, from foraging by unfavourable weather than those working close to the apiary. When two different concentrations of syrup were offered in different groups of dishes simultaneously the number of visitors to the dishes containing the syrup of high concentration rose considerably higher than that of the visitors to the dishes containing low-concentration syrup; even after all the dishes had been refilled with syrup of uniform concentration on the following day, this difference remained noticeable. Bees marked on a patch of willow-herb (Epilobium angustifolium) situated in the midst of a large crop of this plant, were usually recovered within 5 yd. of the point of marking. Such bees remained ‘fixed’ to this area for several days. Observations were made upon isolated patches of the cultivated thistle; Echinops sphaerocephalus, of bees which continued to visit the patches upon which they were marked for periods up to 16 days. The majority of the bees working the patches showed great constancy: and of such regular visitors the percentage per day observed to stray to other patches of Echinops 18 yd. away was comparatively small. The time spent by foraging bees upon the flowerheads of Echinops on any one visit greatly exceeded the time spent in collecting syrup from a dish (20-60 min. as against 1 min.); but the time spent in flying between the hive and the flowers, or dish, and unloading was approximately equal in each case. Only a small proportion of the population of bees working on a particular dish could be found feeding there at any one time, whereas on a patch of flowering plants, under good weather conditions, most of the population visiting that patch would be found there at any one time. This great difference in behaviour on dishes as compared with plants must be borne in mind in any attempt to draw conclusions from dish experiments as to the behaviour of bees

    Cosmic microwave background snapshots: pre-WMAP and post-WMAP

    Full text link
    Abbreviated: We highlight the remarkable evolution in the CMB power spectrum over the past few years, and in the cosmological parameters for minimal inflation models derived from it. Grand unified spectra (GUS) show pre-WMAP optimal bandpowers are in good agreement with each other and with the one-year WMAP results, which now dominate the L < 600 bands. GUS are used to determine calibrations, peak/dip locations and heights, and damping parameters. These CMB experiments significantly increased the case for accelerated expansion in the early universe (the inflationary paradigm) and at the current epoch (dark energy dominance) when they were combined with `prior' probabilities on the parameters. A minimal inflation parameter set is applied in the same way to the evolving data. Grid-based and and Monte Carlo Markov Chain methods are shown to give similar values, highly stable over time and for different prior choices, with the increasing precision best characterized by decreasing errors on uncorrelated parameter eigenmodes. After marginalizing over the other cosmic and experimental variables for a weak+LSS prior, the pre-WMAP data of Jan03 cf. the post-WMAP data of Mar03 give Omega_{tot} =1.03^{+0.05}_{-0.04} cf. 1.02^{+0.04}_{-0.03}. Adding the flat prior, n_s =0.95^{+0.07}_{-0.04} cf. 0.97^{+0.02}_{-0.02}, with < 2\sigma evidence for a log variation of n_s. The densities have concordance values. The dark energy pressure-to-density ratio is not well constrained by our weak+LSS prior, but adding SN1 gives w_Q < -0.7. We find \sigma_8 = 0.89^{+0.06}_{-0.07} cf. 0.86^{+0.04}_{-0.04}, implying a sizable SZ effect; the high L power suggest \sigma_8 \sim 0.94^{+0.08}_{-0.16} is needed to be SZ-compatible.Comment: 36 pages, 5 figures, 5 tables, Jan 2003 Roy Soc Discussion Meeting on `The search for dark matter and dark energy in the Universe', published PDF (Oct 15 2003) is http://www.cita.utoronto.ca/~bond/roysoc03/03TA2435.pd

    Dark Matter: Introduction

    Full text link
    This short review was prepared as an introduction to the Royal Society's 'Dark Matter' conference. It addresses the embarrassing fact that 95% of the universe is unaccounted for. Favoured dark matter candidates are axions or weakly-interacting particles that have survived from the very early universe, but more exotic options cannot be excluded. Experimental searches are being made for the 'dark' particles but we have indirect clues to their nature too. Comparisons of data (from, eg, gravitational lensing) with numerical simulations of galaxy formation can constrain (eg) the particle velocities and collision cross sections. The mean cosmic density of dark matter (plus baryons) is now pinned down to be only about 30% of the critical density However, other recent evidence -- microwave background anisotropies, complemented by data on distant supernovae -- reveals that our universe actually is 'flat', and that its dominant ingredient (about 70% of the total mass-energy) is something quite unexpected -- 'dark energy' pervading all space, with negative pressure. We now confront two mysteries: (i) Why does the universe have three quite distinct basic ingredients -- baryons, dark matter and dark energy -- in the proportions (roughly) 5%, 25% and 70%? (ii) What are the (almost certainly profound) implications of the 'dark energy' for fundamental physics?Comment: 10 pages, 1 figure. Late

    Precise calibration of LIGO test mass actuators using photon radiation pressure

    Full text link
    Precise calibration of kilometer-scale interferometric gravitational wave detectors is crucial for source localization and waveform reconstruction. A technique that uses the radiation pressure of a power-modulated auxiliary laser to induce calibrated displacements of one of the ~10 kg arm cavity mirrors, a so-called photon calibrator, has been demonstrated previously and has recently been implemented on the LIGO detectors. In this article, we discuss the inherent precision and accuracy of the LIGO photon calibrators and several improvements that have been developed to reduce the estimated voice coil actuator calibration uncertainties to less than 2 percent (1-sigma). These improvements include accounting for rotation-induced apparent length variations caused by interferometer and photon calibrator beam centering offsets, absolute laser power measurement using temperature-controlled InGaAs photodetectors mounted on integrating spheres and calibrated by NIST, minimizing errors induced by localized elastic deformation of the mirror surface by using a two-beam configuration with the photon calibrator beams symmetrically displaced about the center of the optic, and simultaneously actuating the test mass with voice coil actuators and the photon calibrator to minimize fluctuations caused by the changing interferometer response. The photon calibrator is able to operate in the most sensitive interferometer configuration, and is expected to become a primary calibration method for future gravitational wave searches.Comment: 13 pages, 6 figures, accepted by Classical and Quantum Gravit

    Benefits of Artificially Generated Gravity Gradients for Interferometric Gravitational-Wave Detectors

    Get PDF
    We present an approach to experimentally evaluate gravity gradient noise, a potentially limiting noise source in advanced interferometric gravitational wave (GW) detectors. In addition, the method can be used to provide sub-percent calibration in phase and amplitude of modern interferometric GW detectors. Knowledge of calibration to such certainties shall enhance the scientific output of the instruments in case of an eventual detection of GWs. The method relies on a rotating symmetrical two-body mass, a Dynamic gravity Field Generator (DFG). The placement of the DFG in the proximity of one of the interferometer's suspended test masses generates a change in the local gravitational field detectable with current interferometric GW detectors.Comment: 16 pages, 4 figure

    Correlated Gravitational Wave and Neutrino Signals from General-Relativistic Rapidly Rotating Iron Core Collapse

    Get PDF
    We present results from a new set of 3D general-relativistic hydrodynamic simulations of rotating iron core collapse. We assume octant symmetry and focus on axisymmetric collapse, bounce, the early postbounce evolution, and the associated gravitational wave (GW) and neutrino signals. We employ a finite-temperature nuclear equation of state, parameterized electron capture in the collapse phase, and a multi-species neutrino leakage scheme after bounce. The latter captures the important effects of deleptonization, neutrino cooling and heating and enables approximate predictions for the neutrino luminosities in the early evolution after core bounce. We consider 12-solar-mass and 40-solar-mass presupernova models and systematically study the effects of (i) rotation, (ii) progenitor structure, and (iii) postbounce neutrino leakage on dynamics, GW, and, neutrino signals. We demonstrate, that the GW signal of rapidly rotating core collapse is practically independent of progenitor mass and precollapse structure. Moreover, we show that the effects of neutrino leakage on the GW signal are strong only in nonrotating or slowly rotating models in which GW emission is not dominated by inner core dynamics. In rapidly rotating cores, core bounce of the centrifugally-deformed inner core excites the fundamental quadrupole pulsation mode of the nascent protoneutron star. The ensuing global oscillations (f~700-800 Hz) lead to pronounced oscillations in the GW signal and correlated strong variations in the rising luminosities of antineutrino and heavy-lepton neutrinos. We find these features in cores that collapse to protoneutron stars with spin periods <~ 2.5 ms and rotational energies sufficient to drive hyper-energetic core-collapse supernova explosions. Hence, joint GW + neutrino observations of a core collapse event could deliver strong evidence for or against rapid core rotation. [abridged]Comment: 29 pages, 14 figures. Replaced with version matching published versio

    Inferring Core-Collapse Supernova Physics with Gravitational Waves

    Get PDF
    Stellar collapse and the subsequent development of a core-collapse supernova explosion emit bursts of gravitational waves (GWs) that might be detected by the advanced generation of laser interferometer gravitational-wave observatories such as Advanced LIGO, Advanced Virgo, and LCGT. GW bursts from core-collapse supernovae encode information on the intricate multi-dimensional dynamics at work at the core of a dying massive star and may provide direct evidence for the yet uncertain mechanism driving supernovae in massive stars. Recent multi-dimensional simulations of core-collapse supernovae exploding via the neutrino, magnetorotational, and acoustic explosion mechanisms have predicted GW signals which have distinct structure in both the time and frequency domains. Motivated by this, we describe a promising method for determining the most likely explosion mechanism underlying a hypothetical GW signal, based on Principal Component Analysis and Bayesian model selection. Using simulated Advanced LIGO noise and assuming a single detector and linear waveform polarization for simplicity, we demonstrate that our method can distinguish magnetorotational explosions throughout the Milky Way (D <~ 10kpc) and explosions driven by the neutrino and acoustic mechanisms to D <~ 2kpc. Furthermore, we show that we can differentiate between models for rotating accretion-induced collapse of massive white dwarfs and models of rotating iron core collapse with high reliability out to several kpc.Comment: 22 pages, 9 figure

    Accurate calibration of test mass displacement in the LIGO interferometers

    Full text link
    We describe three fundamentally different methods we have applied to calibrate the test mass displacement actuators to search for systematic errors in the calibration of the LIGO gravitational-wave detectors. The actuation frequencies tested range from 90 Hz to 1 kHz and the actuation amplitudes range from 1e-6 m to 1e-18 m. For each of the four test mass actuators measured, the weighted mean coefficient over all frequencies for each technique deviates from the average actuation coefficient for all three techniques by less than 4%. This result indicates that systematic errors in the calibration of the responses of the LIGO detectors to differential length variations are within the stated uncertainties.Comment: 10 pages, 6 figures, submitted on 31 October 2009 to Classical and Quantum Gravity for the proceedings of 8th Edoardo Amaldi Conference on Gravitational Wave

    Results from the First Science Run of the ZEPLIN-III Dark Matter Search Experiment

    Get PDF
    The ZEPLIN-III experiment in the Palmer Underground Laboratory at Boulby uses a 12kg two-phase xenon time projection chamber to search for the weakly interacting massive particles (WIMPs) that may account for the dark matter of our Galaxy. The detector measures both scintillation and ionisation produced by radiation interacting in the liquid to differentiate between the nuclear recoils expected from WIMPs and the electron recoil background signals down to ~10keV nuclear recoil energy. An analysis of 847kg.days of data acquired between February 27th 2008 and May 20th 2008 has excluded a WIMP-nucleon elastic scattering spin-independent cross-section above 8.1x10(-8)pb at 55GeV/c2 with a 90% confidence limit. It has also demonstrated that the two-phase xenon technique is capable of better discrimination between electron and nuclear recoils at low-energy than previously achieved by other xenon-based experiments.Comment: 12 pages, 17 figure
    • …
    corecore