This short review was prepared as an introduction to the Royal Society's
'Dark Matter' conference. It addresses the embarrassing fact that 95% of the
universe is unaccounted for. Favoured dark matter candidates are axions or
weakly-interacting particles that have survived from the very early universe,
but more exotic options cannot be excluded. Experimental searches are being
made for the 'dark' particles but we have indirect clues to their nature too.
Comparisons of data (from, eg, gravitational lensing) with numerical
simulations of galaxy formation can constrain (eg) the particle velocities and
collision cross sections.
The mean cosmic density of dark matter (plus baryons) is now pinned down to
be only about 30% of the critical density However, other recent evidence --
microwave background anisotropies, complemented by data on distant supernovae
-- reveals that our universe actually is 'flat', and that its dominant
ingredient (about 70% of the total mass-energy) is something quite unexpected
-- 'dark energy' pervading all space, with negative pressure. We now confront
two mysteries:
(i) Why does the universe have three quite distinct basic ingredients --
baryons, dark matter and dark energy -- in the proportions (roughly) 5%, 25%
and 70%?
(ii) What are the (almost certainly profound) implications of the 'dark
energy' for fundamental physics?Comment: 10 pages, 1 figure. Late