This paper summarizes the physical mechanisms that encode the type and
quantity of cosmological matter in the properties of large-scale structure, and
reviews the application of such tests to current datasets. The key lengths of
the horizon size at matter-radiation equality and at last scattering determine
the total matter density and its ratio to the relativistic density; acoustic
oscillations can diagnose whether the matter is collisionless, and small-scale
structure or its absence can limit the mass of any dark-matter relic particle.
The most stringent constraints come from combining data on present-day galaxy
clustering with data on CMB anisotropies. Such an analysis breaks the
degeneracies inherent in either dataset alone, and proves that the universe is
very close to flat. The matter content is accurately consistent with pure Cold
Dark Matter, with about 25% of the critical density, and fluctuations that are
scalar-only, adiabatic and scale-invariant. It is demonstrated that these
conclusions cannot be evaded by adjusting either the equation of state of the
vacuum, or the total relativistic density.Comment: 17 Pages. Review paper from the January 2003 Royal Society Discussion
Meeting, "The search for dark matter and dark energy in the universe