10,697 research outputs found

    Interaction-free quantum computation

    Full text link
    In this paper, we study the quantum computation realized by an interaction-free measurement (IFM). Using Kwiat et al.'s interferometer, we construct a two-qubit quantum gate that changes one particle's trajectory according to whether or not the other particle exists in the interferometer. We propose a method for distinguishing Bell-basis vectors, each of which consists of a pair of an electron and a positron, by this gate. (This is called the Bell-basis measurement.) This method succeeds with probability 1 in the limit of NN \to \infty, where N is the number of beam splitters in the interferometer. Moreover, we can carry out a controlled-NOT gate operation by the above Bell-basis measurement and the method proposed by Gottesman and Chuang. Therefore, we can prepare a universal set of quantum gates by the IFM. This means that we can execute any quantum algorithm by the IFM.Comment: 11 pages, 7 figures, LaTex2

    Structure of strongly coupled, multi-component plasmas

    Get PDF
    We investigate the short-range structure in strongly coupled fluidlike plasmas using the hypernetted chain approach generalized to multicomponent systems. Good agreement with numerical simulations validates this method for the parameters considered. We found a strong mutual impact on the spatial arrangement for systems with multiple ion species which is most clearly pronounced in the static structure factor. Quantum pseudopotentials were used to mimic diffraction and exchange effects in dense electron-ion systems. We demonstrate that the different kinds of pseudopotentials proposed lead to large differences in both the pair distributions and structure factors. Large discrepancies were also found in the predicted ion feature of the x-ray scattering signal, illustrating the need for comparison with full quantum calculations or experimental verification

    Tunable asymmetric reflectance in silver films near the percolation threshold

    Full text link
    We report on the optical characterization of semicontinuous nanostructured silver films exhibiting tunable optical reflectance asymmetries. The films are obtained using a multi-step process, where a nanocrystalline silver film is first chemically deposited on a glass substrate and then subsequently coated with additional silver via thermal vacuum-deposition. The resulting films exhibit reflectance asymmetries whose dispersions may be tuned both in sign and in magnitude, as well as a universal, tunable spectral crossover point. We obtain a correlation between the optical response and charge transport in these films, with the spectral crossover point indicating the onset of charge percolation. Such broadband, dispersion-tunable asymmetric reflectors may find uses in future light-harvesting systems.Comment: 18 pages, 5 figures, accepted by Journal of Applied Physic

    Effect of electrical bias on spin transport across a magnetic domain wall

    Get PDF
    We present a theory of the current-voltage characteristics of a magnetic domain wall between two highly spin-polarized materials, which takes into account the effect of the electrical bias on the spin-flip probability of an electron crossing the wall. We show that increasing the voltage reduces the spin-flip rate, and is therefore equivalent to reducing the width of the domain wall. As an application, we show that this effect widens the temperature window in which the operation of a unipolar spin diode is nearly ideal.Comment: 11 pages, 3 figure

    The Responsibility of a Corporation: An Attempt at Implementation

    Get PDF

    Collision of Polymers in a Vacuum

    Full text link
    In a number of experimental situations, single polymer molecules can be suspended in a vacuum. Here collisions between such molecules are considered. The limit of high collision velocity is investigated numerically for a variety of conditions. The distribution of contact times, scattering angles, and final velocities are analyzed. In this limit, self avoiding chains are found to become highly stretched as they collide with each other, and have a distribution of scattering times that depends on the scattering angle. The velocity of the molecules after the collisions is similar to predictions of a model assuming thermal equilibration of molecules during the collision. The most important difference is a significant subset of molecules that inelastically scatter but do not substantially change direction.Comment: 7 pages, 6 figure

    Non-locality and gauge freedom in Deutsch and Hayden's formulation of quantum mechanics

    Get PDF
    Deutsch and Hayden have proposed an alternative formulation of quantum mechanics which is completely local. We argue that their proposal must be understood as having a form of `gauge freedom' according to which mathematically distinct states are physically equivalent. Once this gauge freedom is taken into account, their formulation is no longer local.Comment: 3 page

    The Teaching of Corporate Law: A Socratic Investigation of Law and Bureaucracy

    Get PDF

    Quantum algorithms know in advance 50% of the solution they will find in the future

    Full text link
    Quantum algorithms require less operations than classical algorithms. The exact reason of this has not been pinpointed until now. Our explanation is that quantum algorithms know in advance 50% of the solution of the problem they will find in the future. In fact they can be represented as the sum of all the possible histories of a respective "advanced information classical algorithm". This algorithm, given the advanced information (50% of the bits encoding the problem solution), performs the operations (oracle's queries) still required to identify the solution. Each history corresponds to a possible way of getting the advanced information and a possible result of computing the missing information. This explanation of the quantum speed up has an immediate practical consequence: the speed up comes from comparing two classical algorithms, with and without advanced information, with no physics involved. This simplification could open the way to a systematic exploration of the possibilities of speed up.Comment: The example of new quantum speed up that was just outlined in the previous version (finding the character of a permutation) is fully deployed in the present version. There are minor distributed changes to the writin

    Design of On-Target FAAH Inhibitors

    Get PDF
    In this issue of Chemistry & Biology, Alexander and Cravatt [1] propose a model for the binding of carbamate inhibitors to fatty acid amide hydrolase (FAAH), the enzyme that breaks down signaling lipids. Using competitive activity-based protein profiling and click chemistry, they designed potent and selective FAAH inhibitors and characterized their off-target reactions
    corecore