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We present a theory of the current-voltage characteristics of a magnetic domain wall between two
highly spin-polarized materials, which takes into account the effect of the electrical bias on the
spin-flip probability of an electron crossing the wall. We show that increasing the voltage reduces
the spin-flip rate, and is therefore equivalent to reducing the width of the domain wall. As an
application, we show that this effect widens the temperature window in which the operation of a
unipolar spin diode is nearly ideal. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1815044]

INTRODUCTION

The discovery of the giant magnetoresistance effect1 and
the rapid growth in the number of its industrial applications
have raised the hope that a similar breakthrough, perhaps of
even broader consequence, may result from the combination
of established semiconductor technologies with a precise
control of the spin degree of freedom. As part of a growing
effort in what has been called “semiconductor spintronics”2,3

several spin-based devices have been designed and discussed
during the past few years: we mention, for example, the
Datta-Das4 spin transistors, the bipolar spin diodes of Žutić
et al.5 and transistors of Flattéet al.,6 and, lastly, the unipolar
spin diode and transistor of Flatté and Vignale.7,8 All these
devices, while still largely theoretical, are actively pursued in
the lab, since they might eventually prove useful for com-
puter operation such as nonvolatile memory and reprogram-
mable logic.

At the heart of many of the above-mentioned devices is
a magnetic junction(or magnetic domain wall), i.e., a region
of inhomogenous magnetization connecting two regions of
different homogeneous magnetizations. In this paper we ex-
tend the conventional theory of spin transport across such a
junction to include the effect of the electric field in the inho-
mogeneous region between two highly spin-polarized mate-
rials. Our work is motivated, in part, by recent insights on
the role of electric field on the efficiency of spin injection
across a magnetic interface9 and, more specifically, by the
recent discussion of the unipolar spin diode in Refs. 7 and 8.
A simple model for this device is two ferromagnetic conduct-
ing slabs, denotedF1 and F2, with oppositely aligned mag-
netizations, connected by a domain wall of widthd. The

direction of the exchange fieldBW sxd within the domain wall
rotates linearly through an anglep in the z-x plane, i.e.,

BW sxd = B0fcosusxdx̂ + sin usxdẑg, s1d

where −p /2,u,p /2 and 0,x,d. We distinguish be-
tween the component of the current due to “up-spin” elec-
trons J↑ and that due to “down-spin” electronsJ↓, and ac-
cordingly define the charge currentJq=J↑+J↓ and spin

currentJs=J↑−J↓, where “up” points in the positivex direc-
tion. If the domain wall is sufficiently sharp(i.e., more pre-
cisely, if d is much smaller than" /Î2m*D, wherem* is the
effective mass of the electrons andD is the magnitude of the
exchange splitting between the up- and down-spin bands)
then the spin of an electron crossing the junction is essen-
tially conserved. Under these conditions a unipolar device
(where the charge carriers on both sides have the same po-
larity) is analogous to a classicalp-n diode, with up and
down spins corresponding to electrons and holes, and the
oppositely aligned magnetic regions playing the role of the
p-type andn-type materials.7 A bipolar device(where the
charge carriers on different sides have opposite polarity) can
also be analyzed in this context under conditions of forward
bias. A key assumption, particularly in the analysis of the
unipolar spin diode, is that the applied bias voltage drops
almost entirely across the junction, whose resistance is there-
fore supposed to be much higher than that of the rest of the
structure. Indeed, recent experimental work has confirmed
that highly resistive and well localized domain walls can be
realized at nanoconstrictions in GaAs.10,11 Coherent spin
transport across highly resistive vertical tunnel junctions12–14

may also be analyzed based on models such as we present
here.

An important deviation from ideality, namely, the pos-
sible occurrence of spin-flip processes in the junction, was
examined in detail in Ref. 8. Such spin-flip processes are
responsible for the appearance of a lower critical temperature
below which minority-spin injection is no longer operative
and direct tunneling between the majority-spin bands per-
verts the operation of the diode. However, the analysis of
Ref. 8 did not account for the electric field that is present in
the domain wall region when an external bias is applied.
From the high-resistivity assumption we know that this field
is significant, and from the work of Yu and Flatté9 we know
that even a modest electric field, in a semiconductor, can
have a large and favorable effect on the efficiency of
minority-spin injection. These considerations motivate us to
refine the analysis of Ref. 8 to include the effect of the elec-
tric field on the spin-flip rate. The outcome of the improved
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analysis is both interesting and reassuring: on one hand, it
shows that the electric field greatly favors minority-spin in-
jection, thus widening the temperature window in which the
spin-diode exhibits an “ideal” behavior; on the other hand it
confirms the essential validity of the original treatment of
Ref. 7.

THEORY

We now review some of the essential aspects of the
analysis from which the results above are obtained. In pur-
suing the natural analogy betweenp-n diodes and unipolar
spin diodes, a number of assumptions are required, which
closely correspond to those introduced by Shockley for an
ideal diode:15 (1) within the diode, the voltage drop occurs
mainly across the domain wall junction,(2) the Boltzmann
approximation for transport is applicable,(3) the minority
carrier density is small compared to that of majority carriers,
and (4) there is no “recombination current” in the domain
wall.

With these assumptions in mind, we can begin a recon-
struction of theI-V characteristics by considering the action
of a single electron incident on the domain wall. There are
four possibilities [from the four possible combinations of
reflection srd or transmissionstd, with spin flipped from its
original orientation(sf) or not flipped(nf)], the probabilities
of which will be denoted:rsf,rnf ,tsf,tnf. Throughout our
analysis, we will consider this set of coefficients to be the
controlling quantities in the behavior of the spin diode, as
they form the basis for all subsequent calculations. When a
voltageV is applied to the diode, we can think of the regions
F1 andF2 as two majority spin reservoirs of opposite align-
ment at quasichemical potentialsm1=0 andm2=eV, respec-
tively, which, it has been observed, are not appreciably al-
tered by the presence of current. Then the majority- and
minority-spin currents in these regions, due to electrons with
energies in the rangesE,E+dEd, are described component
wise by (see Ref. 8),

j1↓sEd = − f1 − rnfsEdgf1↓sEd + tsfsEdf2↑sEd,

j1↑sEd = rsfsEdf1↓sEd + tnfsEdf2↑sEd,

j2↑sEd = f1 − rnfsEdgf2↑sEd − tsfsEdf1↓sEd,

j2↓sEd = − rsfsEdf2↑sEd − tnfsEdf1↓sEd, s2d

where the functionsfnssEd are the equilibrium distributions
of the carriers ofs-spin orientation in regionFn, with n=1 or
2. To make use of these formulae, we observe that Boltz-
mann statistics impliesf1↓= f2↑e−eV/kT, and that, as will later
be demonstrated in the general calculation, the coefficientrsf

is very small at all energies. We then integrate over all ener-
gies to obtain the total current in each region, and impose
continuity conditions atx=0 andx=d to get

Jss− d/2d
Jssd/2d

=
t̄− + t̄+e−eV/kT

t̄+ + t̄−e−eV/kT
s3d

where t̄±= t̄nf± t̄sf, and the two terms in the sum are
population-averaged transmission coefficients given by

t̄nfssfd =

E
0

`

tnfssfdsEde−E/kTdE

E
0

`

e−E/kTdE

. s4d

Together with the standard drift-diffusion theory and other
observations noted in Ref. 7, the continuity condition yields
the following expressions for the charge current and spin
currents near the domain wall as functions of voltage and
temperature:

Jq

J0
= sinhSeV

kT
DF1 +

t̄sf

tnf
tanh2S eV

2kT
DG ,

Js

J0
= 2sinh2S eV

2kT
DF1 ±

t̄sf

tnf
tanhS eV

2kT
DG , s5d

where the upper sign holds inF2, the lower sign inF1, and
J0;2eDn,

s0d /Ls, D being the diffusion constant,n,
s0d the equi-

librium value of the minority spin density, andLs the spin
diffusion length. Clearly theI-V characteristics of the diode
depend critically on the value of thet̄nf / t̄sf, which will here-
after be referred to as the “key ratio.”

In order to calculate the reflection/transmission prob-
abilities, we must solve the Schrödinger equation for the
electron wave function in the domain wall

F−
"2

2m

]2

] x2 −
D

2
Ssin usxd cosusxd

cosusxd − sin usxd
D + VsxdGSc↑

c↓
D

= ESc↑
c↓
D , s6d

where Vsxd=−eEx is the term associated with the electric
field E that is created by the potential applied across the
domain wall. The presence of this term prevents us from
finding a purely analytical solution, and a numerical solution
is therefore computed. Imposing the appropriate matching
conditions at the domain wall interfaces atx=0 andd, the
transmission/reflection probabilities are obtained.

RESULTS

When bias produces an electric field such thateEd is of
the same order as the spin splitting in this region, the values
of these probabilities change according to whether the field
accelerates or impedes the motion of incident electrons
through the wall. To assist in observing these effects, we

define the dimensionless parametersD̄=D / s"2/2md2d which
measures the relative size of the domain wall barrier, ande
=eEd/ s"2/2md2d, which measures the relative strength of

the electric field. Values forD̄ in the range 0.1–0.5 will be
considered to describe a thin domain wall, 1–5 an interme-
diate size one, and 10–50 a thick one. We note for the wall

in Ref. 10D̄,70 which is within an order of magnitude of
the intermediate size range. Figure 1(a) shows the four coef-

ficients as a function of electron energy forD̄=2.25 and zero
electric field. The essential trends can be easily discerned: at
energies less thanD , rnf is approximately unity as expected,
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since the barrier dwarfs the energy of the incident electron.
As the energy increasesrnf begins to drop andtsf rises at the
same rate, since it is now possible for the electron to cross
the barrier if spin alignment is reversed. At the splitting en-
ergy threshold, the electron has sufficient energy to traverse
the domain wall while maintaining spin orientation;tnf in-

creases rapidly whilernf andtsf plummet. We note finally that
rsf remains approximately zero uniformly over all energies,
as previously announced.

The introduction of an electric field due to current flow
has the effect of splitting the relevant energy thresholds
[Figs. 1(b) and 1(c)], and the size of the domain wall will
determine whether this shift is consequential. The minimum
energy required for transmission without spin flip is reduced

to D̄−e. The trends follow in a very similar fashion, with the
transmission/reflection coefficients in the energy range

s0,D̄−«d reaching approximately the same values as their

zero-field counterparts in the ranges0,D̄d, but doing so more
rapidly in the narrower energy interval, while the coefficients

for energy larger thanD̄−e tend to move more gradually
toward the same limits( tnf→1 and rnf→0 as the electron
energyE grows). Of course electrons of smaller energy can
now be transmitted through the reduced barrier, thustnf

jumps at this earlier energy threshold, and again at the origi-

nal barrier energyD̄ just slightly. As ē exceedsD̄, the trans-
mission probability is significant at almost all nonzero ener-
gies; tnf continues to increase uniformly while all other
coefficients are suppressed. This will occur almost immedi-

ately for small values ofD̄. For large values ofD̄, however,

one would have to go toe@D̄ in order to have a substantial
level of minority spin injection: but at this point the resis-
tance of the junction would be too small to support such a
large electric field. Hence the influence of the electric field is
profound for thin domain walls and essentially negligible for
thick ones.

These observations account for the main aspects of be-
havior of the key ratio as a function of electric field(see Fig.
2). Physically, values of the key ratio greater than unity sig-

nify the dominance of minority-spin injection. Again, forD̄
&0.5, the key ratio is tremendously amplified by the electric
field, since in this limit t̄sf goes to zero, and minority-spin
injection is guaranteed for almost any temperature low
enough not to disturb spin polarization in the conductors, but
high enough to produce an ample supply of carriers above
the exchange barrier(this range is typically given by
0.1D /k,T,0.9D /k). The key ratio depends linearly on

temperature for any value ofD̄ ande, thus for larger, inter-
mediate barrier sizes, there will be a cutoff temperature be-
low which majority spin transmission prevails since most of
the system’s electrons lack sufficient thermal energy to trans-

FIG. 1. The reflection and transmission coefficients for an intermediate size

domain wall sD̄=2.25d vs incident electron energyfĒ;E/ s"2/2md2dg for
three values of the electric field:(a) zero field,(b) an electric field interac-
tion about half the size of the splittingse=1d, and(c) electric field exceeding
the splittingse=3d. The labels of the various curves are shown in(a).

FIG. 2. (a) Key ratio vskT/ D̄ for several values of the electric field parametere=0,1, . . . ,5from bottom up atD̄=5. The dashed line represents the threshold

for minority-spin injection.(b) Key ratio vs dimensionless electric fielde / D̄ for kT/ D̄=1–10from bottom up.
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mit through the wall without spin flip. Our previous obser-
vations of effective barrier reduction due to forward bias
imply that this cutoff temperature will shift downward gen-
erally. Indeed, Fig. 2 depicts the behavior of the key ratio

over a feasible temperature range forD̄=5. The zero-field
curve falls wholly under the minority-spin injection thresh-
old t̄nf / t̄sf=1, for this barrier size, while those for finite val-
ues ofe exceed it at increasingly lower temperatures: fore
=5 the key ratio lies completely above unity. The decaying
exponential under the integral in the expression fort̄nf sug-

gests that, for a given value ofD̄ , t̄nf / t̄sf will rise most rap-
idly when the spin splitting and the bias voltage have com-
parable magnitude. This behavior is clearly seen in the
exponential increase of the key ratio vs electric field in Fig.
2(b), otherwise the ratio is approximately linear with voltage
for any barrier size. Thus we expect that the temperature

window of device operation, bounded by the requirements
for sufficient carrier energy and maintenance of ferromag-
netism, will expand downward for intermediate barrier sizes,
or equivalently, that larger barriers can be accommodated for
a fixed temperature while still preserving minority-spin in-
jection.

We are now ready to discuss the behavior of theI-V
characteristics, calculated according to Eq.(5). Clearly when
the key ratio is very large, say.5, the contribution of the
second term in the square brackets of Eq.(5) is completely
negligible. In this case the spin currentJs reduces to a strictly
even function of voltage, the ratio of the spin to the charge
current Js/Jq (which serves as a measure of spin polariza-
tion) is odd-in-voltage, and they are both nonlinear. Fig.
3(a)–3(c) shows an example of the behavior of the spin cur-
rent, the charge current, and their ratio, within the first region
F1. The dashed lines show the results obtained from Eq.(5)
when the value of key ratio is set to the zero-field value. The

domain is again of intermediate thicknesssD̄=2.5d, but at
temperatureT=0.5D /k the zero-field value is clearly quite
small andJs has a large odd-in-voltage component. When the
voltage dependence of the key ratio is included, its rapidly
increasing behavior, previously noted, leads to a quite differ-
ent curve, which is shown by the solid line. This is clearly
much closer to the “ideal” behavior of the spin current, de-
scribed in Ref. 7.

In conclusion we have shown that the electric field can
assist in maintaining the spin polarization of carriers travers-
ing a magnetic domain wall, and consequently the idealI-V
characteristics of the spin diode should be more easily attain-
able than expected.
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FIG. 3. Plots of the spin currentJs, the charge currentJq, and their ratio

Js/Jq vs bias voltage forD̄=2.5 and two different values of the temperature:

(a)–(c) kT/ D̄=0.5 and(d)–(f) kT/ D̄=0.2. The dashed lines show the results
obtained by treating the key ratiot̄nf / t̄sf as a constant equal to its zero-field
value, while the solid line is the result obtained with the voltage-dependent
key ratio.
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