In a number of experimental situations, single polymer molecules can be
suspended in a vacuum. Here collisions between such molecules are considered.
The limit of high collision velocity is investigated numerically for a variety
of conditions. The distribution of contact times, scattering angles, and final
velocities are analyzed. In this limit, self avoiding chains are found to
become highly stretched as they collide with each other, and have a
distribution of scattering times that depends on the scattering angle. The
velocity of the molecules after the collisions is similar to predictions of a
model assuming thermal equilibration of molecules during the collision. The
most important difference is a significant subset of molecules that
inelastically scatter but do not substantially change direction.Comment: 7 pages, 6 figure