1,109 research outputs found

    Velocity Correlations in Dense Gravity Driven Granular Chute Flow

    Full text link
    We report numerical results for velocity correlations in dense, gravity-driven granular flow down an inclined plane. For the grains on the surface layer, our results are consistent with experimental measurements reported by Pouliquen. We show that the correlation structure within planes parallel to the surface persists in the bulk. The two-point velocity correlation function exhibits exponential decay for small to intermediate values of the separation between spheres. The correlation lengths identified by exponential fits to the data show nontrivial dependence on the averaging time \dt used to determine grain velocities. We discuss the correlation length dependence on averaging time, incline angle, pile height, depth of the layer, system size and grain stiffness, and relate the results to other length scales associated with the rheology of the system. We find that correlation lengths are typically quite small, of the order of a particle diameter, and increase approximately logarithmically with a minimum pile height for which flow is possible, \hstop, contrary to the theoretical expectation of a proportional relationship between the two length scales.Comment: 21 pages, 16 figure

    Stability of Monomer-Dimer Piles

    Full text link
    We measure how strong, localized contact adhesion between grains affects the maximum static critical angle, theta_c, of a dry sand pile. By mixing dimer grains, each consisting of two spheres that have been rigidly bonded together, with simple spherical monomer grains, we create sandpiles that contain strong localized adhesion between a given particle and at most one of its neighbors. We find that tan(theta_c) increases from 0.45 to 1.1 and the grain packing fraction, Phi, decreases from 0.58 to 0.52 as we increase the relative number fraction of dimer particles in the pile, nu_d, from 0 to 1. We attribute the increase in tan(theta_c(nu_d)) to the enhanced stability of dimers on the surface, which reduces the density of monomers that need to be accomodated in the most stable surface traps. A full characterization and geometrical stability analysis of surface traps provides a good quantitative agreement between experiment and theory over a wide range of nu_d, without any fitting parameters.Comment: 11 pages, 12 figures consisting of 21 eps files, submitted to PR

    Singular measures in circle dynamics

    Full text link
    Critical circle homeomorphisms have an invariant measure totally singular with respect to the Lebesgue measure. We prove that singularities of the invariant measure are of Holder type. The Hausdorff dimension of the invariant measure is less than 1 but greater than 0

    Exact Multifractal Exponents for Two-Dimensional Percolation

    Full text link
    The harmonic measure (or diffusion field or electrostatic potential) near a percolation cluster in two dimensions is considered. Its moments, summed over the accessible external hull, exhibit a multifractal spectrum, which I calculate exactly. The generalized dimensions D(n) as well as the MF function f(alpha) are derived from generalized conformal invariance, and are shown to be identical to those of the harmonic measure on 2D random walks or self-avoiding walks. An exact application to the anomalous impedance of a rough percolative electrode is given. The numerical checks are excellent. Another set of exact and universal multifractal exponents is obtained for n independent self-avoiding walks anchored at the boundary of a percolation cluster. These exponents describe the multifractal scaling behavior of the average nth moment of the probabity for a SAW to escape from the random fractal boundary of a percolation cluster in two dimensions.Comment: 5 pages, 3 figures (in colors

    Technology needs assessment of an atmospheric observation system for tropospheric research missions, part 1

    Get PDF
    The technology advancements needed to implement the atmospheric observation satellite systems for air quality research were identified. Tropospheric measurements are considered. The measurements and sensors are based on a model of knowledge objectives in atmospheric science. A set of potential missions and attendant spacecraft and sensors is postulated. The results show that the predominant technology needs will be in passive and active sensors for accurate and frequent global measurements of trace gas concentration profiles

    Two-Dimensional Copolymers and Exact Conformal Multifractality

    Full text link
    We consider in two dimensions the most general star-shaped copolymer, mixing random (RW) or self-avoiding walks (SAW) with specific interactions thereof. Its exact bulk or boundary conformal scaling dimensions in the plane are all derived from an algebraic structure existing on a random lattice (2D quantum gravity). The multifractal dimensions of the harmonic measure of a 2D RW or SAW are conformal dimensions of certain star copolymers, here calculated exactly as non rational algebraic numbers. The associated multifractal function f(alpha) are found to be identical for a random walk or a SAW in 2D. These are the first examples of exact conformal multifractality in two dimensions.Comment: 4 pages, 2 figures, revtex, to appear in Phys. Rev. Lett., January 199

    Maximum Angle of Stability of a Wet Granular Pile

    Full text link
    Anyone who has built a sandcastle recognizes that the addition of liquid to granular materials increases their stability. However, measurements of this increased stability often conflict with theory and with each other [1-7]. A friction-based Mohr-Coulomb model has been developed [3,8]. However, it distinguishes between granular friction and inter-particle friction, and uses the former without providing a physical mechanism. Albert, {\em et al.} [2] analyzed the geometric stability of grains on a pile's surface. The frictionless model for dry particles is in excellent agreement with experiment. But, their model for wet grains overestimates stability and predicts no dependence on system size. Using the frictionless model and performing stability analysis within the pile, we reproduce the dependence of the stability angle on system size, particle size, and surface tension observed in our experiments. Additionally, we account for past discrepancies in experimental reports by showing that sidewalls can significantly increase the stability of granular material.Comment: 4 pages, 4 figure

    Assessing the validity of the accelerometry technique for estimating the energy expenditure of diving double-crested cormorants Phalacrocorax auritus

    Get PDF
    Over the past few years, acceleration-data loggers have been used to provide calibrated proxies of energy expenditure: The accelerometry technique. Relationships between rate of oxygen consumption and a derivation of acceleration data termed "overall dynamic body acceleration" (ODBA) have now been generated for a range of species, including birds, mammals, and amphibians. In this study, we examine the utility of the accelerometry technique for estimating the energy expended by double-crested cormorants Phalacrocorax auritus to undertake a dive cycle (i.e., a dive and the subsequent pause at the surface before another dive). The results show that ODBA does not calibrate with energy expenditure in diving cormorants, where energy expenditure is calculated from measures of oxygen uptake during surface periods between dives. The possible explanations include reasons why energy expenditure may not relate to ODBA but also reasons why oxygen uptake between dives may not accurately represent energy expenditure during a dive cycle

    Screening current effects in Josephson junction arrays

    Get PDF
    The purpose of this work is to compare the dynamics of arrays of Josephson junctions in presence of magnetic field in two different frameworks: the so called XY frustrated model with no self inductance and an approach that takes into account the screening currents (considering self inductances only). We show that while for a range of parameters the simpler model is sufficiently accurate, in a region of the parameter space solutions arise that are not contained in the XY model equations.Comment: Figures available from the author

    Intercalation-enhanced electric polarization and chain formation of nano-layered particles

    Full text link
    Microscopy observations show that suspensions of synthetic and natural nano-layered smectite clay particles submitted to a strong external electric field undergo a fast and extended structuring. This structuring results from the interaction between induced electric dipoles, and is only possible for particles with suitable polarization properties. Smectite clay colloids are observed to be particularly suitable, in contrast to similar suspensions of a non-swelling clay. Synchrotron X-ray scattering experiments provide the orientation distributions for the particles. These distributions are understood in terms of competing (i) homogenizing entropy and (ii) interaction between the particles and the local electric field; they show that clay particles polarize along their silica sheet. Furthermore, a change in the platelet separation inside nano-layered particles occurs under application of the electric field, indicating that intercalated ions and water molecules play a role in their electric polarization. The resulting induced dipole is structurally attached to the particle, and this causes particles to reorient and interact, resulting in the observed macroscopic structuring. The macroscopic properties of these electro-rheological smectite suspensions may be tuned by controlling the nature and quantity of the intercalated species, at the nanoscale.Comment: 7 pages, 5 figure
    corecore