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ABSTRACT

Over the past few years, acceleration-data loggers have been used
to provide calibrated proxies of energy expenditure: the acceler-
ometry technique. Relationships between rate of oxygen con-
sumption and a derivation of acceleration data termed “overall
dynamic body acceleration” (ODBA) have now been generated
for a range of species, including birds, mammals, and amphib-
ians. In this study, we examine the utility of the accelerometry
technique for estimating the energy expended by double-crested
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cormorants Phalacrocorax auritus to undertake a dive cycle (i.e.,
a dive and the subsequent pause at the surface before another
dive). The results show that ODBA does not calibrate with energy
expenditure in diving cormorants, where energy expenditure is
calculated from measures of oxygen uptake during surface pe-
riods between dives. The possible explanations include reasons
why energy expenditure may not relate to ODBA but also reasons
why oxygen uptake between dives may not accurately represent
energy expenditure during a dive cycle.

Introduction

Acceleration-data loggers, which record the measurements of an
accelerometer, were initially employed in whole-animal biology
to investigate time-activity budgets and behavior of free-living
animals. Such loggers have been used to examine, for example,
the in-flight and diving behavior of birds (Yoda et al. 1999, 2001;
Watanuki et al. 2003; Wilson et al. 2006; Gémez Laich et al. 2008;
Halsey et al. 2009b), the diving and feeding behavior of marine
mammals (Sato et al. 2006; Viviant et al. 2010), and the move-
ment patterns of an array of species (Shepard et al. 2008; Wilson
et al. 2008). More recently, acceleration-data loggers have been
applied to estimating energy expenditure in free-living animals
by calibration of measures of acceleration with metabolic rate,
which tends to be measured via respirometry as rate of oxygen
consumption (Vo,). This is known as the accelerometry tech-
nique, and in most cases to date, the recorded values of accel-
eration have been used to derive a metric termed “overall dy-
namic body acceleration” (ODBA), an index of body motion
calculated from triaxial acceleration data (Wilson et al. 2006).
ODBA can be significantly, positively correlated with Vo,, and
this was first demonstrated during treadmill locomotion in great
cormorants Phalacrocorax carbo (Wilson et al. 2006). Significant
relationships between Vo, and ODBA have since been reported
for a range of species, including birds (Wilson et al. 2006; Green
et al. 2009; Halsey et al. 20094), mammals (Halsey et al. 2008,
20096 McGregor et al. 2009), amphibians (Halsey and White
2010), and fish (Gleiss et al. 2010).

However, it is unknown whether ODBA represents a robust
proxy of energy expenditure in air-breathing divers. A rela-
tionship between energy expenditure and ODBA might be ex-
pected for diving animals, since it is reasonable to suppose that
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during dives involving greater activity and hence higher ODBA,
the rate of energy expenditure is also higher. On the other hand,
in contrast to typical situations on land, diving involves the
complicating issues of intermittent breathing, a lack of a phys-
iological steady state (Fedak et al. 1988), and potentially com-
plicated temperature effects on metabolism (Bevan et al. 1997;
de Leeuw et al. 1997; Grémillet et al. 2005b). At present, only
a single investigation of sea lions Eumetopias jubatus has eval-
uated the appropriateness of the technique for estimating
Vo, during aquatic behavior by an air-breathing species (Fahl-
man et al. 2008b). Reanalysis of the data for periods of diving
alone suggests that variation in ODBA accounts for only 14%
of the variation in Vo,. This implies that ODBA has relatively
poor predictive power for diving animals, but the generality of
this suggestion requires further investigation with other species.

Our study examines the suitability of the accelerometry tech-
nique, using the derivation ODBA, for estimating the energy
cost of a dive cycle (where a dive cycle is defined as a dive and
the subsequent period at the surface before another dive) by
double-crested cormorants Phalacrocorax auritus. Our aim is
to further understand the range of conditions under which
ODBA can be used to provide reliable estimates of metabolic
rate during activity.

Material and Methods
Study Species and Dive Tank

Five adult double-crested cormorants (mass range: 1.77-2.23
kg) were used. They were housed communally, in sheltered
outdoor pens (8 m x 4 m x 5 m high) with access to a water
tank, at the University of British Columbia. Data were collected
in parallel with a separate study (Halsey et al. 2007), and details
of bird care are given in Enstipp et al. (2006).

The birds were trained to dive singly from the respirometry
chamber in a 5-m-diameter, 12-m-high tank filled to 9.5 m
(Enstipp et al. 2006). The tank included a netting floor sus-
pended at a depth of 5 m that represented maximum dive depth
and on which pieces of herring (15-30 g) were placed. The
tank was covered with flexible mesh except for a wooden base
in one quarter that held a respirometry chamber (see below).
The tank was filled with dechlorinated, fresh water. Water tem-
perature ranged between 13.8° and 17.3°C. Birds were moni-
tored visually from a small hut at the top of the tank and with
an underwater camera array (Enstipp et al. 2007a), and they
could be confined within the respirometry chamber by means
of a trapdoor that was operated from within the hut. At the
start of a measurement session, the bird was confined within
the respirometer and was allowed to start diving once settled.
Once the bird was judged to have ceased diving, it was confined
within the respirometer by means of the trapdoor.

Respirometry

Gas exchange was measured with standard negative-pressure
open-flow respirometry (Withers 2001; Lighton 2008) and a
system that has been described in detail elsewhere (Halsey et

al. 2007). Briefly, air was drawn through a 65-L respirometry
chamber in the shape of a truncated pyramid, a 0.5-L con-
densation trap, and a mass flow meter (Sierra Instruments,
Monterrey, CA). A subsample of the air was drawn off down-
stream of the flow meter and pumped into a 5-mL manifold
at atmospheric pressure. Air was then drawn from within this
manifold, through a 5-mL column containing indicating Drie-
rite and passed through an O, and CO, analyzer (ML206, AD-
Instruments, Sydney, Australia). Flow rate through the chamber
was 90-100 L min".

Calculation of Vo,

The volume of O, taken up by the bird (Vo,,,, mL) between
any two points in time (¢, and t,, min) was calculated with
modifications of the Woakes instantaneous equations,

VOZup = (Fl‘ioz(tl) - FEoz(tz))V

2E02 — FF,Oz(tl) — Eoz(tz)

+ VE(tZ - t1) 5

(Woakes and Butler 1983; Parkes et al. 2002), where F,0,(t,)
and F,0,(t,) are the excurrent O, fractions at t, and t,, respec-
tively, Fo, is the incurrent O, fraction, V is chamber volume
(ml), and VF is excurrent flow rate (mL min~"). Rates of O,
uptake (VOZHP, mL min~") are then calculated as

Vo,
L=t .

Vo,,, =
Unlike most respirometry equations (e.g., Depocas and Hart
1957; Withers 1977, 2001; Bartholomew et al. 1981; Frappell
et al. 1989; Lighton 2008), the Woakes equation assumes a
respiratory exchange ratio (RER, the ratio of the rate of CO,
production to VOZUP) of 1 and therefore does not account for
changes in flow through the chamber arising from differing
rates of O, uptake and CO, production. A low RER will manifest
as a difference in incurrent (VI) and excurrent (VE) flow rates.
However, because of the high V, employed in our study, AFo,

Table 1: Comparison of models explaining total
oxygen consumed over a dive cycle (Vo, ) in
terms of dive-cycle duration (cycle), surface
duration (surface), dive duration (dive), and total
overall dynamic body acceleration (ODBA,)

AIC w, r?

i

Cycle 280.1 .32 .66
Surface + dive 280.9 21 .68
ODBA, 304.7 <.001 .53

Cycle + ODBA,
Surface + dive + ODBA,

281.6 .15 .66
280.1 31 .68

Note. AIC = Akaike’s information criterion; w; = Akaike
weight, the probability that a model provides the best fit given
the data. All models included bird identity as a random effect,
and interindividual differences account for most of the explained
variation in Vo, .
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Figure 1. Total oxygen consumption (Vo,, mL) against dive-cycle
duration (G, s) in double-crested cormorants (Vo,. = 2.06 + 2.78C,
P<0.0001, r* = 0.66; Table 2). Data for Vo, are shown adjusted for
interindividual differences between birds. The regression line shown
is the common slope for the data, derived from a linear mixed-effects
model.

(Eo, — E.0,) was small (<0.3%), and the calculated V, for values
of RER between 0.7 and 1 was generally very similar to the
measured V.

The residual time constant of the system was 3 s, determined
by N, injections at various points within the respirometer
chamber to simulate instantaneous changes in Vo, up- That is,
the time required for 99% of an instantaneous change in actual
\702“p to appear as a change in calculated \./O2up was 3 s.

A postdive surface period was defined as starting when the
head of the bird broke the water surface. Observations indicated
that the birds exhaled as their heads emerged from the water.
Postdive respiratory frequency was 0.9 = 0.2 [SD] Hz (n = 8),
which agrees with published data for diving tufted ducks Aythya
fuligula (Parkes et al. 2002), and so O, uptake was considered
to start half a respiratory cycle after surfacing.

Accelerometry

The accelerometers used to measure body motion were the
same as those used in a previous study of cormorants (Wilson
et al. 2006). The loggers were set to record triaxial acceleration
(0-6g) at 12 Hz with 22-bit resolution in a 128-Mb random-
access memory. Devices were attached to the lower back, either
via the feathers with adhesive tape (Tesa UK; Wilson et al. 1997)
or via a neoprene harness that attached under the breast of the
bird. The attachment method was not a significant factor in
any of the explanatory models described below, so data for the
two attachment methods were pooled. The loggers weighed 35
g in air (largest dimensions: 65 mm X 36 mm x 22 mm).
ODBA is calculated by first smoothing the three calibrated
transducer channels with a running mean. In our study, the width
of the running mean was 1 s (ie., 12 data points). Then the
smoothed value representing mostly gravitational acceleration
was subtracted from the corresponding unsmoothed data for

that time interval to produce a value for g resulting primarily
from dynamic acceleration. Derived values were then converted
into absolute positive units, and the resultant values from all
three channels were summed to give an overall value for the
triaxial dynamic acceleration experienced by the birds. These
ODBA values were then matched to diving data for analysis, and
total ODBA (ODBA,) for a dive cycle was calculated by summing
ODBA throughout a dive and the subsequent postdive surface
interval. Mean ODBA was calculated over the dive cycle.

Data Analysis

The estimated total amount of oxygen consumed during a dive
cycle (Vo,.) was calculated as Vo, during the surface period
subsequent to that dive. This assumes that the bird uses each
surface period exclusively to recover its respiratory gas stores
in response to the previous dive and that it replenishes its
oxygen stores to the same level after each period of submer-
gence (Halsey et al. 20035, 2007). The estimated rate of oxygen
consumption averaged over a dive cycle (Vo,.) was calculated
as Vo, . divided by the duration of the dive cycle. To test whether
ODBA provides valid estimates of Vo, or VO,., a number of
statistical models describing Vo, and Vo,, in terms of dive-
cycle duration, surface duration (the period spent at the surface
after a dive), dive duration, and ODBA, or ODBA were com-
pared (e.g., Table 1). The best of the candidate set of models
was chosen on the basis of Akaike’s information criterion
(AIC), which is calculated as —2 times the log likelihood of a
model plus 2 times the number of estimable parameters (Burn-
ham and Anderson 2001, 2002). This addition penalizes su-
perfluous parameters in the model, so that the best model is
not necessarily the one with the largest number of parameters.
The model with the lowest AIC is most likely to be the best
of the candidate set, given the data, and the probability that a
model is the best of the candidate set is represented by its Akaike
weight (w; Burnham and Anderson 2001). All models included
bird identity as a random effect.

A linear regression was also conducted to test for a rela-
tionship between Vo,. and ODBA over a dive bout, with bird
identity included as a random effect. For presentation of the

Table 2: Parameter estimates for the best-fit
models for Vo,  given by Akaike’s information
criterion (Table 1)

Estimate SE P

Vo, . ~ cycle:

Intercept 2.06 8.97 .82
Cycle duration 2.78 27 <.0001
Vo, . ~ Surface +
dive + ODBA;
Intercept —1.69 12.20 .89
ODBA, — 41 40 31
Dive duration 4.52 .90 <.0001
Surface duration 2.51 49 <.0001

Note. ODBA, = total overall dynamic body acceleration.
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Figure 2. Total oxygen consumption (Vo, , mL) against total overall
dynamic body acceleration (ODBA,, g) over a dive cycle in double-
crested cormorants (Vo,, = —10.5 + 1.850DBA,, P<0.0001, r* =
0.53). Data for Vo, are shown adjusted for interindividual differences
between birds. The regression line shown is the common slope for the
data, derived from a linear mixed-effects model.

data, the parameter estimate for bird identity was subtracted
from measured values of Vo, and Vo, for each bird to adjust
for interindividual differences.

Results

Data were obtained for a total of 95 dive cycles. Dive durations
ranged between 7 and 32 s (mean: 15 s), while surface durations
ranged between 3 and 99 s (mean: 13 s). Dive bouts were of
durations (defined as the time from the start of the first dive
to the closing of the trapdoor) ranging between 76 and 386 s
(mean: 191 s) and incorporated an average of 7 dives. Five dive
cycles were considerably longer (69—131 s) than the remaining
90 dives (11-51 s) because of long recorded surface durations
at the end of some dive bouts (see “Material and Methods”),
and these were excluded from the majority of analysis. The
measured Vo,  was best described in terms of either cycle du-
ration alone or surface duration combined with dive duration
and ODBA, (Table 1). However, while cycle duration was sig-
nificantly positively related to Vo, (Fig. 1), there was no sig-
nificant relationship between ODBA, and Vo, in the second-
best model, which also included significant effects of surface
duration and dive duration (Table 2). The relationship between
Vo,. and ODBA, was significant (Fig. 2), but ODBA, was a
poorer predictor of Vo, than was cycle duration alone (Table
1). Including data for the five longest dives further decreased
support for the model including ODBA,, in favor of the one
including only cycle duration. The measure Vo, was best de-
scribed in terms of ODBA (Table 3), but there was no significant
relationship (Fig. 3; Table 4). There was no significant rela-
tionship between Vo,. and ODBA over a dive bout (P =
0.84; Fig. 4).

Discussion

The objective of this study was to test for a relationship between
energy expenditure and ODBA in diving cormorants at the
resolution of a single dive cycle. The data showed that total
ODBA was significantly positively correlated with total oxygen
consumption over a dive cycle (Vo,; Fig. 2), but the relation-
ship was less well supported than the one between Vo, and
dive-cycle duration (Fig. 1; Table 1). ODBA was not signifi-
cantly correlated with estimated Vo, (Fig. 3). We suggest that
this finding is supported by the data of the two previous pub-
lished studies that include investigation on this topic. We note,
however, that the authors of these studies reached a different
conclusion, and we suggest that further investigation of addi-
tional species is necessary to resolve the issue.

A recent study of Steller sea lions Eumetopias jubatusreported
a significant relationship between Vo,. and ODBA at the tem-
poral scale assessed in our study (Fahlman et al. 2008b). How-
ever, reanalysis of figure 2 in Fahlman et al. (2008b) returns a
coefficient of determination (r*) value of 0.14; in contrast, dur-
ing terrestrial locomotion, variation in ODBA typically ac-
counts for more than 80% of the variation in Vo, (e.g., Halsey
et al. 2009¢). A second significant regression presented in Fahl-
man et al. (2008b) includes the same data plus data for non-
diving rest periods at the surface. In this case, the strength of
the relationship is reported and is slightly greater, having a
correlation coefficient (r) of 0.47. However, given the data in-
cluded, arguably the most reasonable interpretation of such an
analysis is simply that the rate of energy expenditure and ODBA
tend to be lower during nondiving rest periods at the water
surface than during diving bouts. Furthermore, Williams et al.
(2004) found a significant relationship in Weddell seals Lep-
tonychotes weddelli between Vo, . and the number of strokes
performed during a dive estimated from one-axis accele-
rometry, yet the coefficient of determination (> = 0.87, n =
90 dives) was similar to that obtained when Vo, . was regressed
against dive duration (r* = 0.85, n = 137 dives). This suggests
that the number of strokes is correlated with Vo, . only because
both are correlated with dive duration.

Table 3: Comparison of models explaining rate of
oxygen consumption over a dive cycle (Vo,,) in
terms of dive-cycle duration (cycle), surface
duration (surface), dive duration (dive), and mean
overall dynamic body acceleration (ODBA)

AIC w, r

Cycle 3554 .14 .27
Surface + dive 357.3 .05 .27
ODBA 353.3 .40 .28

Cycle + ODBA

Surface + dive + ODBA
Note. AIC = Akaike’s information criterion; w; = Akaike

weight, the probability that a model provides the best fit, given
the data. All models included bird identity as a random effect, and

3542 .26 .29
355.2 .16 .30

interindividual differences account for most of the explained
variation in VO,_.
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Figure 3. Mean rate of oxygen consumption (Vo, ., mL min~") against
mean overall dynamic body acceleration (ODBA, g) over a dive cycle
in double-crested cormorants (Table 4). The relationship is not sig-
nificant (P = 0.11). Data for Vo, are shown adjusted for interindi-
vidual differences between birds.

The poor relationship in our study between energy ex-
penditure and ODBA is observed despite an 11-fold range in
Vo,. and a sevenfold range in Vo, although these corre-
sponded to only threefold ranges in ODBA over the dive cycle.
In comparison, during terrestrial locomotion in great cormo-
rants, VO, and ODBA are significantly related, even though
each shows only a twofold range (Wilson et al. 2006). In our
study, Vo, is significantly and more strongly related to dive-
cycle duration (Fig. 1) than to ODBA, (Fig. 2), and Vo,. is
also related to dive duration and surface duration (Table 2),
suggesting that the poor relationship between ODBA and en-
ergy expenditure does not arise as a consequence of errors in
the measurement of Vo, ,,. Rather, ODBA simply provides a
less reliable estimate of Vo, than does dive time-budget in-
formation. The possible explanations for a poor relationship
between Vo, or Vo, and ODBA during diving are numerous
but can be categorized into issues concerning the use of mea-
sures of Vo,,, between dives to estimate dive-cycle metabolic
rate and issues concerning whether indeed metabolic rate
should relate to ODBA.

Animals consume oxygen continuously during diving, but
oxygen uptake can be measured via respirometry only during
surface periods between dives. When oxygen consumption dur-
ing diving is inferred from oxygen uptake at the surface, a
number of assumptions are made. First, the total oxygen taken
up during a surface period is typically apportioned to the as-
sociated dive cycle. While it is likely that the main function of
a surface period is immediate recovery of the respiratory gas
stores consumed during a dive, there is evidence that surface
periods also function as preparation for the subsequent dive
(Lea et al. 1996; Halsey et al. 2003a; Wilson 2003). Second,
divers are presumed to reload their oxygen stores to the same
level after each dive; however, at least in some cases, divers
allow their oxygen stores to run down over a number of dives
rather than fully recovering their stores after each one (Fahlman

et al. 2008a; see also Ydenberg and Forbes 1988). Third, there
may be indirect metabolic costs, such as hypothermia (Enstipp
et al. 2006), that accrue during diving that are met not during
the surface periods between those dives but rather during an
elongated surface period after a diving bout (de Leeuw 1996;
Richman and Lovvorn 2007).

Explanations for why metabolic rate does not relate to ODBA
include the possibility that because of the resistance of water,
movements of the animal are damped during dives, with the
result that activity at the surface has an unrepresentatively large
effect on ODBA. Such activity may be associated with move-
ment of the cormorant at the surface or movement of the water
on which the cormorant is floating. Also, again, body temper-
ature may be important, with the reduction exhibited by many
diving endotherms during a bout of dives (e.g., Bevan et al.
1997; Grémillet et al. 2005b; Schmidt et al. 2006) possibly mask-
ing a relationship between energy expenditure and body mo-
tion. Unlike most diving birds, cormorants have a partially
wettable plumage (Grémillet et al. 2005a), which likely results
in high rates of heat loss and explains why they have among
the highest diving metabolic rates of birds (Enstipp et al. 2005,
2006, 2007b). This may render them particularly vulnerable to
changes in metabolic rate as body temperature decreases during
diving bouts (Grémillet et al. 1998; Enstipp et al. 2006, 2007b).

Further studies could assess whether some of these issues
contribute to a lack of correlation between Vo, or Vo, and
ODBA. Testing for this relationship in a reptilian diver (M. R.
Enstipp, unpublished manuscript; L. G. Halsey, unpublished
manuscript) could be elucidating, because some species (e.g.,
green turtles Chelonia mydas) surface only by breaking above
the water with their head and thus effectively remain submerged
during both diving and surface periods. Furthermore, they
spend at least the majority of their time in water, and thus as
long as they are acclimatized to the present water temperature,
their metabolic rate will not be affected by temperature during
a bout of dives. Specifically for cormorants, calibrating ODBA
for dives in water of a temperature within or close to their
thermoneutral zone would assess whether temperature is a fac-
tor affecting the relationship between metabolic rate and
ODBA. Finally, in some cases VO,. may scale with ODBA at
the level of diving bouts, although our data do not offer evi-
dence that this is the case in cormorants (Fig. 4). Further, even
if successful, such a calibration would not empower researchers
to measure ODBA in order to obtain an estimation of energy
expenditure at the level of individual dives.

We assert that the data currently available suggest that the

Table 4: Parameter estimates for the best-fit model for Vo,
given by Akaike’s information criterion (Table 3)

Estimate  SE P
Vo,, ~ overall dynamic body
acceleration (ODBA):
Intercept 217.4 30.8  <.0001
Mean ODBA —101.7 62.8 11
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