7,343 research outputs found

    Increasing entanglement through engineered disorder in the random Ising chain

    Full text link
    The ground state entanglement entropy between block of sites in the random Ising chain is studied by means of the Von Neumann entropy. We show that in presence of strong correlations between the disordered couplings and local magnetic fields the entanglement increases and becomes larger than in the ordered case. The different behavior with respect to the uncorrelated disordered model is due to the drastic change of the ground state properties. The same result holds also for the random 3-state quantum Potts model.Comment: 4 pages, published version, a few typos correcte

    Density Matrix Renormalization Group for Dummies

    Get PDF
    We describe the Density Matrix Renormalization Group algorithms for time dependent and time independent Hamiltonians. This paper is a brief but comprehensive introduction to the subject for anyone willing to enter in the field or write the program source code from scratch.Comment: 29 pages, 9 figures. Published version. An open source version of the code can be found at http://qti.sns.it/dmrg/phome.htm

    Entanglement production by quantum error correction in the presence of correlated environment

    Full text link
    We analyze the effect of a quantum error correcting code on the entanglement of encoded logical qubits in the presence of a dephasing interaction with a correlated environment. Such correlated reservoir introduces entanglement between physical qubits. We show that for short times the quantum error correction interprets such entanglement as errors and suppresses it. However for longer time, although quantum error correction is no longer able to correct errors, it enhances the rate of entanglement production due to the interaction with the environment.Comment: 7 pages, 3 figures, published versio

    Entanglement detection in hybrid optomechanical systems

    Full text link
    We study a device formed by a Bose Einstein condensate (BEC) coupled to the field of a cavity with a moving end-mirror and find a working point such that the mirror-light entanglement is reproduced by the BEC-light quantum correlations. This provides an experimentally viable tool for inferring mirror-light entanglement with only a limited set of assumptions. We prove the existence of tripartite entanglement in the hybrid device, persisting up to temperatures of a few milli-Kelvin, and discuss a scheme to detect it.Comment: 6 pages, 7 figures, published versio

    Berry phase for a spin 1/2 in a classical fluctuating field

    Full text link
    The effect of fluctuations in the classical control parameters on the Berry phase of a spin 1/2 interacting with a adiabatically cyclically varying magnetic field is analyzed. It is explicitly shown that in the adiabatic limit dephasing is due to fluctuations of the dynamical phase.Comment: 4 pages, 1 figure, published versio

    Adiabatic quantum dynamics of a random Ising chain across its quantum critical point

    Full text link
    We present here our study of the adiabatic quantum dynamics of a random Ising chain across its quantum critical point. The model investigated is an Ising chain in a transverse field with disorder present both in the exchange coupling and in the transverse field. The transverse field term is proportional to a function Γ(t)\Gamma(t) which, as in the Kibble-Zurek mechanism, is linearly reduced to zero in time with a rate τ1\tau^{-1}, Γ(t)=t/τ\Gamma(t)=-t/\tau, starting at t=t=-\infty from the quantum disordered phase (Γ=\Gamma=\infty) and ending at t=0t=0 in the classical ferromagnetic phase (Γ=0\Gamma=0). We first analyze the distribution of the gaps -- occurring at the critical point Γc=1\Gamma_c=1 -- which are relevant for breaking the adiabaticity of the dynamics. We then present extensive numerical simulations for the residual energy EresE_{\rm res} and density of defects ρk\rho_k at the end of the annealing, as a function of the annealing inverse rate τ\tau. %for different lenghts of the chain. Both the average Eres(τ)E_{\rm res}(\tau) and ρk(τ)\rho_k(\tau) are found to behave logarithmically for large τ\tau, but with different exponents, [Eres(τ)/L]av1/lnζ(τ)[E_{\rm res}(\tau)/L]_{\rm av}\sim 1/\ln^{\zeta}(\tau) with ζ3.4\zeta\approx 3.4, and [ρk(τ)]av1/ln2(τ)[\rho_k(\tau)]_{\rm av}\sim 1/\ln^{2}(\tau). We propose a mechanism for 1/ln2τ1/\ln^2{\tau}-behavior of [ρk]av[\rho_k]_{\rm av} based on the Landau-Zener tunneling theory and on a Fisher's type real-space renormalization group analysis of the relevant gaps. The model proposed shows therefore a paradigmatic example of how an adiabatic quantum computation can become very slow when disorder is at play, even in absence of any source of frustration.Comment: 10 pages, 11 figures; v2: added references, published versio

    Entangled states maximize the two qubit channel capacity for some Pauli channels with memory

    Full text link
    We prove that a general upper bound on the maximal mutual information of quantum channels is saturated in the case of Pauli channels with an arbitrary degree of memory. For a subset of such channels we explicitly identify the optimal signal states. We show analytically that for such a class of channels entangled states are indeed optimal above a given memory threshold. It is noteworthy that the resulting channel capacity is a non-differentiable function of the memory parameter.Comment: 4 pages no figure

    A Topological Study of Contextuality and Modality in Quantum Mechanics

    Get PDF
    Kochen-Specker theorem rules out the non-contextual assignment of values to physical magnitudes. Here we enrich the usual orthomodular structure of quantum mechanical propositions with modal operators. This enlargement allows to refer consistently to actual and possible properties of the system. By means of a topological argument, more precisely in terms of the existence of sections of sheaves, we give an extended version of Kochen-Specker theorem over this new structure. This allows us to prove that contextuality remains a central feature even in the enriched propositional system.Comment: 10 pages, no figures, submitted to I. J. Th. Phy

    A novel method for evaluating the critical nucleus and the surface tension in systems with first order phase transition

    Full text link
    We introduce a novel method for calculating the size of the critical nucleus and the value of the surface tension in systems with first order phase transition. The method is based on classical nucleation theory, and it consists in studying the thermodynamics of a sphere of given radius embedded in a frozen metastable surrounding. The frozen configuration creates a pinning field on the surface of the free sphere. The pinning field forces the sphere to stay in the metastable phase as long as its size is smaller than the critical nucleus. We test our method in two first-order systems, both on a two-dimensional lattice: a system where the parameter tuning the transition is the magnetic field, and a second system where the tuning parameter is the temperature. In both cases the results are satisfying. Unlike previous techniques, our method does not require an infinite volume limit to compute the surface tension, and it therefore gives reliable estimates even by using relatively small systems. However, our method cannot be used at, or close to, the critical point, i.e. at coexistence, where the critical nucleus becomes infinitely large.Comment: 12 pages, 15 figure

    Media use during adolescence: the recommendations of the Italian Pediatric Society.

    Get PDF
    BACKGROUND: The use of media device, such as smartphone and tablet, is currently increasing, especially among the youngest. Adolescents spend more and more time with their smartphones consulting social media, mainly Facebook, Instagram and Twitter because. Adolescents often feel the necessity to use a media device as a means to construct a social identity and express themselves. For some children, smartphone ownership starts even sooner as young as 7 yrs, according to internet safety experts. MATERIAL AND METHODS: We analyzed the evidence on media use and its consequences in adolescence. RESULTS: In literature, smartphones and tablets use may negatively influences the psychophysical development of the adolescent, such as learning, sleep and sigh. Moreover, obesity, distraction, addiction, cyberbullism and Hikikomori phenomena are described in adolescents who use media device too frequently. The Italian Pediatric Society provide action-oriented recommendations for families and clinicians to avoid negative outcomes. CONCLUSIONS: Both parents and clinicians should be aware of the widespread phenomenon of media device use among adolescents and try to avoid psychophysical consequences on the youngest
    corecore