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Abstract

We describe the Density Matrix Renormalization Group algorithms for time dependent and time

independent Hamiltonians. This paper is a brief but comprehensive introduction to the subject for

anyone willing to enter in the field or write the program source code from scratch. An open source

version of the code can be found at: http://qti.sns.it/dmrg/phome.html .
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The advent of information era has been opening the possibility to perform numerical

simulations of quantum many-body systems, thus revealing completely new perspectives in

the field of condensed matter theory. Indeed, together with the analytic approaches, numer-

ical techniques provide a lot of information and details otherwise inaccessible. However, the

simulation of a quantum mechanical system is generally a very hard task; one of the main

reasons is related to the number of parameters required to represent a quantum state. This

value usually grows exponentially with the number of constituents of the system,1 due to the

corresponding exponential growth of the Hilbert space. This exponential scaling drastically

reduces the possibility of a direct simulation of many-body quantum systems. In order to

overcome this limitation, many numerical tools have been developed, such as Monte Carlo

techniques2 or efficient Hamiltonian diagonalization methods, like Lanczos and Davidson

procedures.3

The Density Matrix Renormalization Group (DMRG) method has been introduced by

White in 1992.4,5 It was originally devised as a numerical algorithm useful for simulat-

ing ground state properties of one-dimensional quantum lattices, such as the Heisenberg

model or Bose-Hubbard models; then it has also been adapted in order to simulate small

two-dimensional systems.6,7 DMRG traces its roots to Wilson’s numerical Renormalization

Group (RG),8 which represents the simplest way to perform a real-space renormalization of

Hamiltonians. Starting from a numerical representation of some microscopic Hamiltonian

in a particular basis, degrees of freedom are iteratively added, typically by increasing the

size of the finite system. Then less important ones are integrated out and accounted for

by modifying the original Hamiltonian. The new Hamiltonian will thus exhibit modified

as well as new couplings; renormalization group approximations consist in physically mo-

tivated truncations of the set of couplings newly generated by the elimination of degrees

of freedom. In this way one obtains a simplified effective Hamiltonian that should catch

the essential physics of the system under study. We point out that the DMRG can also be

seen as a variational method under the matrix-product-form ansatz for trial wave functions:

the ground state and elementary excited states in the thermodynamic limit can be simply

expressed via an ansatz form which can be explored variationally, without referencing to the

renormalization construction.9 Very recently, influence from the quantum information com-

munity has led to a DMRG-like algorithm which is able to simulate the temporal evolution

of one-dimensional quantum systems.10,11,12,13,14,15,16,17
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Quantum information theory has also allowed to clarify the situations in which this

method can be applied efficiently. Indeed, it has been shown10 that the efficiency in simulat-

ing a quantum many-body system is strictly connected to its entanglement behavior. More

precisely, if the entanglement of a subsystem with respect to the whole is bounded (or grows

logarithmically with its size) an efficient simulation with DMRG is possible. Up to now,

it is known that ground states of one dimensional lattices (whether critical or not) satisfy

this requirement, whereas in higher dimensionality it is not fulfilled as the entanglement is

subject to an area law.18 On the other hand, the simulation of the time evolution of critical

systems may not be efficient even in one dimensional systems as the block entanglement can

grow linearly with time and block size.19,20 In a different context, it has also been shown

that in a quantum computer performing an efficient quantum algorithm (Shor’s algorithm

and the simulation of a quantum chaotic system) the entanglement between qubits grows

faster than logarithmically.21,22 Thus, t-DMRG cannot efficiently simulate every quantum

one dimensional system; nonetheless, its range of applicability is very broad and embraces

very different subjects. Indeed, DMRG can be used to study condensed matter problems

and to simulate many quantum information applications in 1D quantum systems as, for

example, simulations of quantum information transfer,23 quantum computations,21 the ef-

fects of decoherence on a qubit24 and the entanglement properties of one dimensional critical

systems.25

The aim of this review is to introduce the reader to the last development of DMRG

codes, briefly but in a comprehensive way. For the sake of briefness we do not review the

vast literature of papers based on DMRG techniques and we refer the interested readers to

Refs. 6, 7, 26 and references therein. Here we provide both the main ideas and the technical-

ities needed to reach a deep understanding of DMRG and allowing an interested reader to

develop its own DMRG code or modify an existing one. We also provide some easy examples

that can be used as testbeds for new DMRG codes.

In Sec. I we describe the basics of time independent DMRG algorithm, in Sec. II we

introduce the measurement procedure (a more detailed exposition is given in Ref. 7 and

references therein). In Sec. III the time dependent DMRG algorithm is explained. Finally,

in Sec. IV we provide some numerical examples, and in Sec. V we discuss some technical

issues regarding the implementation of a DMRG program code. In the last section the reader

can find the schemes of the DMRG algorithms, both for the static and time dependent case.
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Further material can be found on our website (http://qti.sns.it/dmrg/phome.html),

where the t-DMRG code will be released with an open license.

I. THE STATIC DMRG ALGORITHM

As yet pointed out in the introduction, the tensorial structure of the Hilbert space of a

composite system leads to an exponential growth of the resources needed for the simulation

with the number of the system constituents. However, if one is interested in the ground state

properties of a one-dimensional system, the number of parameters is limited for non critical

systems or grows polynomially for a critical one.18 This implies that it is possible to rewrite

the state of the system in a more efficient way, i.e. it can be described by using a number of

coefficients which is much smaller than the dimension of the Hilbert space. Equivalently, a

strategy to simulate ground state properties of a system is to consider only a relevant subset

of states of the full Hilbert space. This idea is at the heart of the so called “real space

blocking renormalizarion group” which we briefly describe below, and is reminiscent of the

renormalization group (RG) introduced by Wilson.8

In the real space blocking RG procedure one typically begins with a small part of a

quantum system (a block B of size L, living on an m-dimensional Hilbert space), and a

Hamiltonian which describes the interaction between two identical blocks. Then one projects

the composite 2-block system (of size 2L) representation (dimension m2) onto the subspace

spanned by the m lowest-lying energy eigenstates, thus obtaining a new truncated represen-

tation for it. Each operator is consequently projected onto the new m-dimensional basis.

This procedure is then iteratively repeated, until the desired system size is reached. RG was

successfully applied for the Kondo problem, but fails in the description of strongly interact-

ing systems. This failure is due to the procedure followed to increase the system size and to

the criterion used to select the representative states of the renormalized block: indeed the

decimation procedure of the Hilbert space is based on the assumption that the ground state

of the entire system will essentially be composed of energetically low-lying states living on

smaller subsystems (the forming blocks) which is not always true. A simple counter-example

is given by a free particle in a box: the ground state with length 2l has no nodes, whereas

any combination of two grounds in l boxes will have a node in the middle, thus resulting in

higher energy.
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A convenient strategy to solve the RG breakdown is the following: before choosing the

states to be retained for a finite-size block, it is first embedded in some environment that

mimics the thermodynamic limit of the system. This is the new key ingredient of the DMRG

algorithm; the price one has to pay is a slowdown of the system growth with the number

of the algorithm’s iterations: from the exponentially fast growth Wilson’s procedure to

the DMRG linear growth (very recently, in the context of real-space renormalization group

methods, a new scheme which recovers the exponential growth has been proposed; this is

based upon a coarse-graining transformation that renormalizes the amount of entanglement

of a block before its truncation27). In the following, we introduce the working principles of

the DMRG, and provide a detailed description to implement it in practice (for a pedagogical

introduction see for example Refs. 28, 29).

A. Infinite-system DMRG

Keeping in mind the main ideas of the DMRG depicted above, we now formulate the basis

structure of the so called infinite-system DMRG for one-dimensional lattice systems.The

typical scenario where DMRG can be used is the search for an approximate ground state of

a 1D chain of neighbor interacting sites, each of them living in a Hilbert space of dimension

D. As in Wilson’s RG, DMRG is an iterative procedure in which the system is progressively

enlarged. In the infinite system algorithm we keep enlarging the system until the ground

state properties we are interested in (e.g., the ground state energy per site) have converged.

The system Hamiltonian is written as:

Ĥ =
∑

i

∑

q

J(q)Ŝi(q)T̂i+1(q) + B̂(q)V̂i(q) (1)

where J(q) and B(q) are coupling constants, and {Ŝi(q)}q, {T̂i(q)}q and {V̂i(q)}q are sets of

operators acting on the i-th site. The index q refers to the various elements of these sets.

For example, in a magnetic chain these can be angular momentum operators. For simplicity

we will not describe the case of position dependent couplings, since it can be easily reduced

to the uniform case.

The algorithm starts with a block composed of one site B(1, D) (see Fig. 1a); the argu-

ments of B refer to the number of sites it embodies, and to the number of states used to

describe it. From the computational point of view, a generic block B(L,mL) is a portion of
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memory which contains all the information about the block: the block Hamiltonian, its basis

and other operators that we will introduce later. The block Hamiltonian ĤB for B(L,mL)

includes only the local terms (i.e. local and interaction terms where only sites belonging to

the block are involved). The next step consists in building the so called left enlarged block,

by adding a site to the right of the previously created block. The corresponding Hamiltonian

ĤE is composed by the local Hamiltonians of the block and the site, plus the interaction

term:

ĤE = ĤB + ĤS + ĤBS . (2)

The enlarged block is then coupled to a similarly constructed right enlarged block. If the

system has global reflection symmetry, the right enlarged block Hamiltonian ĤE′ can be

obtained just by reflecting the left enlarged block.30

By adding the interaction of the two enlarged blocks, a super-block Hamiltonian ĤsupB

is then built, which describes the global system:

ĤsupB = ĤE + ĤE′ + ĤSS′ . (3)

From now on, we refer to the sites S and S ′ as the free sites. The matrix ĤsupB should

finally be diagonalized in order to find the ground state ψG, which can be rewritten in ket

notation as:

|ψG〉 = ψaαβb |aαβb〉 . (4)

Hereafter Latin indexes refer to blocks, while Greek indexes indicate free sites; implicit

summation convention is assumed. From |ψG〉 one evaluates the reduced density matrix ρ̂L

of the left enlarged block, by tracing out the right enlarged block:

ρ̂L = TrR |ψG〉 〈ψG| = ψaαβb ψ
∗
a′α′βb |aα〉 〈a

′α′| . (5)

The core of the DMRG algorithm stands in the renormalization procedure of the enlarged

block, which eventually consists in finding a representation in terms of a reduced basis with at

mostm (fixed a priori) elements. This corresponds to a truncation of the Hilbert space of the

enlarged block, since mL+1 = min(mLD,m).31 These states are chosen to be the first mL+1

eigenstates of ρL, corresponding to the largest eigenvalues. This truncated change of basis is

performed by using the mLD×mL+1 rectangular matrix ÔL→L+1 (where the subscripts stand

for the number of sites enclosed in the input block and in the output renormalized block),

6



whose columns, in matrix representation, are the mL+1 selected eigenstates. To simplify

notations, let us introduce the function g(a, α) = D(a− 1) +α, which acts on a block index

a and on the next free site index α and gives an index of the enlarged block running from

1 to mLD. The output of the full renormalization procedure is a truncated enlarged block

B(L+ 1, mL+1), which coincides with the new starting block for the next DMRG iteration.

This consists in the new block Hamiltonian:

Ĥ ′
B = Ô†

L→L+1 ĤE ÔL→L+1 = (6)

= O
∗ g(a,α) c
L→L+1 H

g(a,α) g(a′,α′)
E O

g(a′,α′) c′

L→L+1 |c〉 〈c′|

and in the local operators:

Ŝ ′
L+1(q) = Ô†

L→L+1 ŜL+1(q) ÔL→L+1 (7)

written in the new basis. These are necessary in the next step, for the construction of the

interaction between the rightmost block site and the free site. The output block B(L +

1, mL+1) includes also the matrix ÔL→L+1 which identifies the basis states of the new block.

It is worth to emphasize that we can increase the size of our system without increasing the

number of states describing it, by iteratively operating the previously described procedure.

We now summarize the key operations needed to perform a single DMRG step. For each

DMRG step the dimension of the super-block Hamiltonian goes from 2L to 2L + 2, thus

the simulated system size increases by 2 sites. The infinite-system DMRG, with reflection

symmetry, consists in iterating these operations:

1. Start from left block B(L,mL), and enlarge it by adding the interaction with a single

site.

2. Reflect such enlarged block, in order to form the right enlarged block.

3. Build the super-block from the interaction of the two enlarged blocks.

4. Find the ground state of the super-block and the mL+1 = min(mLD,m) eigenstates

of the reduced density matrix of the left enlarged block with largest eigenvalues.

5. Renormalize all the relevant operators with the matrix ÔL→L+1, thus obtaining B(L+

1, mL+1).
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FIG. 1: Schematic procedure for the DMRG algorithm. On the left part (a) one iteration of the

infinite-system DMRG algorithm is shown: starting from the system block B(L,mL) and adding

one free site to it, the enlarged block B(L,mL) • is formed. Here for simplicity we assume that the

system is reflection-symmetric, thus the environmental right block is taken equal to the left block.

Then, after having created the super-block B(L,mL) • •B(L,mL), a renormalization procedure is

applied in order to get the new block for the next DMRG iteration.

On the right part (b) the scheme of a complete finite-system DMRG sweep is depicted.

Notice that at each DMRG step the ground state of a chain whose length grows by two sites

is found. By contrast, the number of states describing a block is always m, regardless of how

many sites it includes. This means that the complexity of the problem is a priori fixed by m

and D (while D is imposed by the structure of the simulated system, m ≥ D is a parameter

which has to be appropriately set up by the user, in order to get the desired precision for

the simulation; see also Sec. IV). In Sec. V we will discuss how it is possible to extract the

ground state of the super-block Hamiltonian without finding its entire spectrum, by means

of efficient numerical diagonalization methods, like Davidson or Lanczos algorithms.32 We
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stress that at each DMRG step a truncation error ǫtr is introduced:

ǫtr =
∑

i>m

λi (8)

where λi are the eigenvalues of the reduced density matrix ρL in decreasing order. The

error ǫtr is the weight of the eigenstates of ρL not selected for the new block basis. In order

to perform a reliable DMRG simulation, the parameter m should be chosen such that ǫtr

remains small, as one further increases the system size. For critical 1D systems ǫtr decays

as a function of m with a power law, while for 1D systems away from criticality it decays

exponentially, thus reflecting the entanglement properties of the system in the two regimes:

a critical system is more entangled, therefore more states have to be taken into account.

B. Finite-system DMRG

The output of the infinite-system algorithm described before is the (approximate) ground

state of an “infinite” 1D chain. In other words, one increases the length of the chain by

iterating DMRG steps, until a satisfactory convergence is reached. However, for many

problems, infinite-system DMRG does not yield accurate results up to the wanted precision.

For example, the strong physical effects of impurities or randomness in the Hamiltonian

cannot be properly accounted for by infinite-system DMRG, as the total Hamiltonian is not

yet known at intermediate steps. Moreover, in systems with strong magnetic fields, or close

to a first order transition, one may be trapped in a metastable state favoured for small sizes

(e.g., by edge effects).

Finite-system DMRG manages to eliminate such effects to a very large degree, and to

reduce the error almost to the truncation error.4 The idea of the finite-system DMRG algo-

rithm is to stop the infinite-system algorithm at some preselected super-block length Lmax,

which is subsequently kept fixed. In the following DMRG steps one applies the steps of

infinite-system DMRG, but only one block is increased in size while the other is shrunk,

thus keeping the super-block size constant. Reduced basis transformations are carried out

only for the growing block.

When the infinite-system algorithm reaches the desired system size, the system is formed

by two blocks B(Lmax/2 − 1, m) and two free sites, as shown in the first row of Fig. 1b.

The convergence is then enhanced by the so called “sweep procedure”. This procedure is
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illustrated in the sequent rows of Fig. 1b. It consists in enlarging the left block with one

site and reducing the right block correspondingly in order to keep the length fixed. In other

words, after one finite-system step the system configuration is B(Lmax/2, m) • •B(Lmax/2−

2, m) (where • represents the free site). While the left block is constructed by enlarging

B(Lmax/2 − 1, m) with the usual procedure, the right block is taken from memory, as it

has been built in a previous step of the infinite procedure and saved. Indeed, during the

initial infinite-system algorithm one should save the matrices Ôi→i+1, the block Hamiltonians

ĤB(i) and the interaction operators Ŝi(q) for i = 1, Lmax/2−1. The finite-system procedure

goes on increasing the size of the left block until the length Lmax − 4 is reached. At this

stage a right block B(1, D) with one site is constructed from scratch and the left block

B(Lmax − 3, m) is obtained through the renormalization procedure. Then, the role of the

left and right block are switched and the free sites start to sweep from right to left. Notice

that at each step the renormalized block B(i,mi) has to be stored in memory. During these

sweeps the length of the chain does not change, thus at each step the wavefunction of the

previous one can be used as a good guess for the diagonalization procedure (see Subsec. VB

for details). At each sweep the approximation of the ground state improves. Usually two or

three sweeps are sufficient to reach convergence in the energy output.

Up to now we concentrated on a single quantum state, namely the ground state. It is

also possible to find an approximation to a few number of states (typically less than 5):

for example, the ground state and some low-excited state.4 These states are called target

states. At each DMRG step, after the diagonalization, for each target state |ψk〉 one has to

calculate the corresponding reduced density matrix ρk, by tracing the right enlarged block.

Then a convex sum of these matrices with equal weights7 is performed:

ρ =
1

nk

nk
∑

k=1

ρk . (9)

Finally ρ has to be diagonalized in order to find the eigenbasis and the transformation

matrices Ô. In this way the DMRG algorithm is capable of efficiently representing not only

the Hilbert space “around” the ground state, but also the surroundings of the other target

states. It is worth noting that targeting many states reduces the efficiency of the algorithm

because a larger m has to be used for obtaining the same accuracy. An alternative way

could be to run as many iterations of DMRG with a single target state as many states are

required.
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C. Boundary conditions

The DMRG algorithm, as it has been depicted above, describes a system with open

boundary conditions. However, from a physical point of view, periodic boundary conditions

are normally highly preferable to the open ones, as surface effects are eliminated and finite-

size extrapolation gives better results for smaller system sizes. In the presented form, the

DMRG algorithm gives results much less precise in the case of periodic boundary conditions

than for open boundary conditions.7,33,34 Nonetheless, periodic boundary conditions can be

implemented by using the super-block configuration B • B •. This configuration is preferred

over B • •B because the two blocks are not contiguous, thus enhancing, for typical situations,

the sparseness of the matrices one has to diagonalize and therefore maintaining the same

computational speed of the algorithm for open boundary conditions.5 Simulations with the

standard infinite-system super-block configuration have also been performed in order to

include twisted boundary conditions, thus allowing the possibility to study spin stiffness or

phase sensitivity.35

II. MEASURE OF OBSERVABLES

Besides the energy, DMRG is also capable to extract other characteristic features of the

target states, namely to measure the expectation values of a generic quantum observable

M̂ . Properties of the Lmax-site system can be obtained from the wave functions |ψ〉 of the

super-block at any point of the algorithm, although the symmetric configuration (with free

sites at the center of the chain) usually gives the most accurate results. The procedure is

to use the wave function |ψ〉 resulting from the diagonalization of the super-block (see the

scheme in Sec.IA, step 4), in order to evaluate expectation values.

We first concentrate on local observables M̂(i), living on one single site i. If one is

performing the finite-system DMRG algorithm, it is possible to measure the expectation

value of M̂(i) at the particular step inside a sweep in which i is one of the two free sites.

The measure is then a simple average:

〈ψ| M̂(i) |ψ〉 = ψ∗
aαβb M(i)αα′ ψaα′βb (10)

where i is the first free site. In the special cases in which the observables refer to the extreme

sites (i = 1 or i = Lmax), the measurement is performed when the shortest block is B(1, D),

11



following the same procedure.

It is also possible to measure an observable expectation value while performing the

infinite-system algorithm. In this case there are two possibilities: either i is one of the

two central free sites or not. In the former case the measurement is performed as before,

while in the latter one should express M̂ in the truncated DMRG basis. At each DMRG

iteration the operator M̂(i) must be updated in the new basis using the Ô matrix, as in

Eq. (7): M̂(i) → Ô† M̂(i) Ô. The measurement is then computed as:

〈M̂(i)〉 = ψ∗
aαβb Maa′ ψa′αβb (11)

if site i belongs to the left block and analogously if i belongs to the right block.

For non local observables, like a correlation function P̂ (i) Q̂(j), the evaluation of expecta-

tion values depends on whether i and j are on the same block or not. The most convenient

way in order to perform such type of measurements is to use the finite-system algorithm.

Let us first consider the case of nearest neighbor observables P̂ (i) and Q̂(i + 1). We can

measure the expectation value 〈P̂ (i) Q̂(i + 1)〉 when i and i + 1 are the two free sites. In

this case the dimensions of the matrices P̂ and Q̂ are simply (D ×D) and we do not have

to store these operators in block representation. The explicit calculation of this observable

is then simply:

〈P̂ (i) Q̂(i+ 1)〉 = ψ∗
aαβb Pαα′ Qββ′ ψaα′β′b . (12)

In general, measures like 〈P̂ (i) Q̂(j)〉 (where i and j are not nearest neighbor sites) can

also be evaluated. This task can be accomplished by firstly storing the block representation

of P̂ (i) and Q̂(j), and then by performing the measure when i belongs to a block and j

is a free site or vice-versa. Analogously, it is possible to evaluate measures in the case

when i belongs to the left block, while j to the right one. What should be avoided is the

measure of 〈P̂ (i) Q̂(j)〉 when i and j belong to the same block. Indeed, in this case the

block representation of P̂ (i) Q̂(j) evaluated through those of P̂ (i) and Q̂(j) separately is

not correct, due to the truncation. Instead, such type of operators have to be built up

as a compound object: in order to measure them, one has also to keep track of the block

representation of the product P̂ (i) Q̂(j) throughout all the calculation, consequently slowing

down the algorithm.5,7

The standard DMRG algorithm works better with open boundary conditions (see Sub-

Sec. IC); this necessarily introduces boundary effects in the measure of observables. For
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example, in the case of spin S = 1/2 chains, open boundaries cause a strong alternation in

the local bond strength 〈Ŝ(j) · Ŝ(j+1)〉 at the borders, which slowly decays when shifting to

the center.5 In order to obtain a good description of the bulk system by using open boundary

conditions, one generally has to simulate a larger system and then discard measurements

on the outer sites; the number of outer sites over which measurement outcomes strongly

fluctuate depends on the simulated physical system.

Finally, we stress that usually the convergence of measurements is slower than that of

energy, since more finite-system DMRG sweeps are required in order to have reliable mea-

surement outcomes (typically between five and ten). As an example, we quote the case of the

one-dimensional spin 1 Bose Hubbard model,36 in which energies typically converge after 2 or

3 sweeps, while the measure of the dimerization order parameter requires at least five sweeps

to converge (the convergence gets even slower when the system approaches criticality).

III. TIME DEPENDENT DMRG

In this section we describe an extension of the static DMRG, which incorporates real

time evolution into the algorithm. Various different time-dependent simulation methods

have been recently proposed,10,12,13,37 but here we restrict our attention to the algorithm

introduced by White and Feiguin.13

The aim of the time-dependent DMRG algorithm (t-DMRG) is to simulate the evolution

of the ground state of a nearest-neighbor one dimensional system described by a Hamiltonian

Ĥ , following the dynamics of a different Hamiltonian Ĥ1. In few words, the algorithm starts

with a finite-system DMRG, in order to find an accurate approximation of the ground state

|ψG〉 of Ĥ. Then the time evolution of |ψG〉 is implemented, by using a Suzuki-Trotter

decomposition38,39 for the time evolution operator Û = e−iĤ1t.

The DMRG algorithm gives an approximation to the Hilbert subspace that better de-

scribes the state of the system. However, during the evolution the wave function changes and

explores different parts of the Hilbert space. Thus, the truncated basis chosen to represent

the initial state will be eventually no more accurate. This problem is solved by updating the

truncated bases during the evolution. The first effort, due to Cazalilla and Marston, consists

in enlarging the effective Hilbert space, by increasing m, during the evolution.37 However,

this method is not very efficient because if the state of the system travels sufficiently far
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from the initial subspace, its representation becomes not accurate, or m grows too much

to be handled. Another solution has been proposed in Ref. 13: the block basis should be

updated at each temporal step, by adapting it to the instantaneous state. This can be done

by repeating the DMRG renormalization procedure using the instantaneous state as the

target state for the reduced density matrix.

In order to approximately evaluate the evolution operator Û = e−iĤ1t we use a Suzuki-

Trotter decomposition.38,39 The first order expansion in time is given by the formula:

e−iĤ1t ≈

(

Lmax−1
∏

L=1

e−iĤ1(L,L+1)dt

)n

, (13)

where n = t/dt gives the discretization of time t in small intervals dt, and ĤL,L+1 is the

interaction Hamiltonian (plus the local terms) between site L and L+ 1. Further decompo-

sitions at higher orders can be obtained by observing that the Hamiltonian can be divided

in two addends: the first, F̂ =
∑

L even Ĥ1(L,L + 1), containing only even bonds, and the

second, Ĝ =
∑

L odd Ĥ1(L,L + 1), containing only odd bonds. Since the terms in F̂ and Ĝ

commute, an even-odd expansion can be performed:

e−iĤ1t ≈
(

e−iF̂ dt

2 e−iĜdt e−iF̂ dt

2

)n

. (14)

This coincides with a second order Trotter expansion, in which the error is proportional

to dt3. Of course, one can enhance the precision of the algorithm by using a fourth order

expansion with error dt5:40

e−iĤt =
5
∏

i=1

(

e−ipi F̂ dt

2 e−ipi Ĝ dt e−i pi F̂ dt

2

)n

+O(dt5) , (15)

where all pi = 1/(4 − 41/3), except p3 = 1 − 4p1 < 0, corresponding to evolution backward

in time.

Nonetheless, the most serious error in a t-DMRG program remains the truncation error.

A nearly perfect time evolution with a negligible Trotter error is completely worthless if

the wave function is affected by a relevant truncation error. It is worth to mention that

t-DMRG precision becomes poorer and poorer as time grows larger and larger, due to the

accumulated truncation error at each DMRG step. This depends on Lmax, on the number

of Trotter steps and, of course, on m. At a certain instant of time, called the runaway time,

the t-DMRG precision decreases by several order of magnitude. The runaway time increases

14



with m, but decreases with the number of Trotter steps and with Lmax. For a more detailed

discussion on the t-DMRG errors and on the runaway time, see Gobert et al.41

The initial wave function |ψG〉 can be chosen from a great variety of states. As an example,

for a spin 1/2 chain, a factorized state can be prepared by means of space dependent magnetic

fields. In general, it is also possible to start with an initial state built up by transforming the

ground state as |ψA〉 =
∑Lmax

i=1 Âi |ψG〉, where Âi are local operators. The state |ψA〉 can be

obtained by simply performing a preliminary sweep, just after the finite-system procedure,

in which the operators Âi are subsequently applied to the transforming wave function, when

i is a free site.13

In summary, the t-DMRG algorithm is composed by the following steps:

1. Run the finite-system algorithm, in order to obtain the ground state |ψG〉 of Ĥ.

2. If applicable, perform an initial transformation in order to set up the initial state |ψA〉.

3. Keep on the finite-system procedure by performing sweeps in which at each step the

operator e−iĤ1(L,L+1)dt is applied to the system state (L and L + 1 are the two free

sites for the current step).

4. Perform the renormalization, following the finite-system algorithm, and store the ma-

trices Ô for the following steps.

5. At each step change the state representation to the new DMRG basis using White’s

state prediction transformation43 (see below).

6. Repeat points 3 to 5, until a complete dt time evolution has been computed.

White’s state prediction transformation43 has been firstly developed in the framework of

the finite-system DMRG to provide a good guess for the Davidson or Lanczos diagonaliza-

tion, thus enhancing the performance of the algorithm (see Subsec. VB for details). Here we

briefly recall how it works, and adapt it to the time-dependent part of the DMRG algorithm.

At any DMRG step, one has the left block B(L− 1, m) and right block B(Lmax −L− 1, m)

description. To transform a quantum state |ψ〉 of the system in the new basis for the next

step (corresponding to the blocks B(L,m) and B(Lmax − L − 2, m)) one uses the matrices

Ô: ÔL−1→L and Ô†
Lmax−L−2→Lmax−L−1. The first matrix transforms a block of length L−1 in

a block of length L and it has been computed in the current renormalization. The second
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one transforms a block of length Lmax −L− 1 in a block of length Lmax −L− 2; this matrix

is recovered from memory, since it has been computed at a previous step. The transformed

wave function then reads:

ψ̃aαβb = O
∗ g(a′,α′) a
L−1→L O

g(β,b) b′

Lmax−L−2→Lmax−L−1 ψa′α′αb′ . (16)

Assuming this operation is already implemented, the t-DMRG algorithm introduces only a

slight modification: at step L (i.e. when L and L+ 1 are the two free sites), instead of the

diagonalizing the super-block with the Davidson or Lanczos, one applies exp(−iĤ1(L,L +

1)dt) to the transformed wave function.

e
−iĤ1(1,2)dt

e
−iĤ1(2,3)dt

e
−iĤ1(3,4)dt

e
−iĤ1(L,L+1)dt

e
−iĤ1(Lmax−3,Lmax−2)dt

e
−iĤ1(Lmax−1,Lmax)dt

T
ro

tt
er

sw
ee

p

FIG. 2: Schematic procedure for the t-DMRG algorithm, implemented by using a first order

Trotter expansion for the time evolution operator. In this case one half sweep is needed for each

time interval dt; higher order expansions require more complicated schemes, with an increasing

number of steps.

To compute the system time evolution using the first order Trotter expansion of Eq. (13),

one should perform one half sweep for each time interval dt: at the j-th step one has to apply

e−iĤ1(j+1,j+2)dt, forming the usual left-to-right sweep. When arriving at the end of the chain,

the system has been evolved of a dt time; one then goes on with the next time iteration,

applying the corresponding evolution operators in a right-to-left sweep. Attention must be

paid for the border links: at the first step both e−iĤ1(1,2)dt and e−iĤ1(2,3)dt have to be applied;

an analogous situation happens at the last step. The procedure for one complete dt time

evolution is depicted in Fig. 2. Notice that, since at each step the operator e−iĤ1(L,L+1)dt is
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computed on the two current free sites L and L+ 1 (or when the block is composed of just

one site), its representation is given in terms of a D2×D2 matrix, and most remarkably it is

exact. More generally, if the border block dimension is such that it can be treated exactly, it

can be convenient to perform its evolution as a whole and then switch the sweep direction.

As stated before, to increase the simulation precision, one can expand the time evolution

operator to the second order Trotter expansion, as in Eq. (14). The implementation of this

expansion requires 3/2 sweeps for each time interval dt: in the first e−iF̂ dt

2 is applied, in the

second e−iĜdt, finally a third half sweep is needed to apply e−iF̂ dt

2 again. In order to acquire

further precision one may go to the fourth order (see Eq. (15)). In this case 5× 3
2

are needed,

thus the computational time is respectively five times or fifteen times longer than the one

needed by using Eq. (14) or Eq. (15).

Finally, we want to remark again that this algorithm for the time evolution is a small

modification of the finite-system procedure: the main difference is the computation of a

factor of the Trotter expansion instead of performing the diagonalization procedure at each

step. This means that a typical t-DMRG sweep is much less time consuming that a finite-

system one. Notice also that the measurements are performed in the same way as in the

finite-system algorithm.

To conclude this section, we provide a simple and intuitive example which explains how

the time-dependent algorithm works. We consider the time evolution of the on-site magneti-

zation of an excited state for a spin-1 Heisenberg chain.13 In order to study the dynamics of

this excitation, first we run the finite-system DMRG algorithm, thus obtaining the ground

state |ψG〉 of a L-sites chain. We then perform a preliminary sweep to apply Â = Ŝ+(j) on

|ψG〉 for a single site j located at the center of the chain, namely we choose Âj = δj,L/2Ŝ
+(j).

In this way we set up the initial state |ψA〉, that is a localized wave packet consisting of

all wave vectors. We then perform the t-DMRG algorithm with Ĥ1 being the Heisenberg

hamiltonian, and instantaneously measure the local magnetization Sz(j) for each site j:

〈ψ(t)|Ŝz(j)|ψ(t)〉. The initial wave packet |ψA〉 spreads out as time progresses; different

components move with different speeds, given by the corresponding group velocity (see

Fig. 3).
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FIG. 3: Temporal evolution of the local magnetization Sz(j) of a 200 sites spin-1 Heisenberg chain,

starting from the excited state obtained by applying Ŝ+(100) to the ground state of the chain.

Here we used Jdt = 10−1 as a Trotter slicing time, and a truncated Hilbert space of dimension

m = 15.

IV. NUMERICAL EXAMPLES

In this section we report some numerical examples on the convergence of the DMRG

outputs with respect to the user fixed parameters m, and (t, dt). Let us first focus on the

static DMRG algorithm. The main source of error is due to the step-by-step truncation

of the Hilbert space dimension of the system block from m × D to m. The parameter m

must be set up very carefully, since it represents the maximum number of states used to

describe the system block. It is clear that, by increasing m, the output becomes closer and

closer to the exact solution, which is eventually reached in the limit of m ∼ DL (in that case

the algorithm would no longer perform truncation, and the only source of error would be

due to inevitable numerical roundoffs). As an example of the output convergence with m,

in Fig. 4 we plotted the behavior of the ground state energy in the one-dimensional spin 1
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Bose-Hubbard model as a function of m (see Ref. 36 for a detailed description of the physical

system). The convergence is exponential with m, as can be seen in the figure. In the inset

the CPU-time dependence with m is shown and the dashed line shows a power law fit of

data, mα with α ≃ 3.2.
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FIG. 4: Ground state energy for the spinorial Bose-Hubbard model with a fixed number of total

particles n = Lmax as a function of m. A 1D chain of Lmax = 50 sites has been simulated with a

3-sweep finite-system algorithm. The dashed line is an exponential fit: E(m) = E0(1 + C0e
−α0m)

with E0 ≃ −0.17046, C0 ≃ −0.035, α0 ≃ 0.05. Inset: CPU-time dependence with m; dashed line

shows a power law fit t ∼ mα with α ≃ 3.2.

Numerical simulation presented here and in the following figures have been performed on a 1.6GHz

PowerPC 970 processor with 2.4GB RAM memory.42

We now present an example of convergence of the t-DMRG with m and (t, dt). We

consider the dynamical evolution of the block entanglement entropy in a linear XXZ chain

(see Ref. 20 for more details). The state of the system at time t = 0 is the anti-ferromagnetic

state. The initial state evolves with the Hamiltonian of theXX model from an initial product

state to an entangled one. This entanglement can be measured by the von Neumann entropy

of the reduced density matrix of the block ρ(t):

S(t) = −Trρ(t) log2 ρ(t) (17)
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In the example we calculate S(t) for a block of size 6 in a chain of length 50. The time

evolution has been calculated form t = 0 to t = 3 with a fixed Trotter time step dt = 5 ·10−2

that ensures that the Trotter error is negligible with respect to the truncation error. Since
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FIG. 5: Time evolution (in arbitrary units) of the von Neumann entropy S(t) for m = 15 (crosses),

30 (stars), 50 (triangles), 75 (diamonds), 100 (squares), 150 (circles). The t-DMRG data are

compared with the exact result (solid line). Inset: CPU-time dependence with m; dashed line

shows a power law fit t ∼ mα and α ≃ 3.14.

the XX model can be solved analytically, we are able to compare the exact results with the

t-DMRG data. In Fig. 5 we show S(t) as a function of time for various values of m, from

15 to 150, and compared with the exact data. In the inset we present the CPU-time as a

function of m, which behaves as a power-law mα with α ≃ 3.14, confirming the estimate

given in the inset of Fig. 4. The deviation ε = |Sexact − Sm|/Sm as a function of m and

of time is shown in Fig. 6. The typical fast convergence of the DMRG result with m is

recovered only when m is greater than a critical value mc (two distinct regimes are clear in

Fig. 6). This is due to the amount of entanglement present in the system: an estimate of

the number of states needed for an accurate description is given by mc ∝ 2S(t). Thus, it is

always convenient to keep track of entropy to have an initial guess for the number of states
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needed to describe the system.41 On the other hand, if m is increased too much, the Trotter

error will dominate and smaller dt is needed to improve accuracy.
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FIG. 6: Deviation ε = |Sexact − Sm|/Sm at time t = 3 as a function of m. Inset: ε as a function of

time for various values of m: 15 (crosses), 30 (stars), 50 (triangles), 75 (diamonds), 100 (squares),

150 (circles).

V. TECHNICAL ISSUES

In this section we explain some technicalities regarding the implementation of DMRG

and t-DMRG code. They are not essential in order to understand the algorithm, but they

can be useful to anyone who wants to write a code from scratch, or to modify the existing

ones. Some of these parts can be differently implemented, in part or completely skipped,

depending on the computational complexity of the physical system under investigation.

A. Hamiltonian diagonalization

The ground state of the Hamiltonian is usually found by diagonalizing a matrix of dimen-

sions (mD)2 × (mD)2. Typically the DMRG algorithm is used when one is only interested
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in the ground state properties (at most in few low-energy eigenstates). The diagonaliza-

tion time can thus be greatly optimized by using Lanczos or Davidson methods: these are

capable to give a small number (. 10) of eigenstates close to a previously chosen target

energy in much less time than exact diagonalization routines. Moreover they are optimized

for large sparse matrices, (that is the case of typical super-block Hamiltonians) and they do

not require as input the full matrix. What is needed is just the effect of it on a generic state

|ψ〉, which lives in a (mD)2 dimensional Hilbert space. The Hamiltonian in Eq. (1) can be

written as:

Ĥ =
∑

p

Â(p) ⊗ B̂(p) , (18)

where Â(p) and B̂(p) act respectively on the left and on the right enlarged block. Thus,

only this matrix multiplication has to be implemented:

ψout
aαβb =

∑

p

Â(p) g(a,α) g(a′,α′) B̂(p) g(b,β) g(b′,β′) ψin
a′α′β′b′ (19)

In this way it is possible to save a great amount of memory and number of operations, since

the dimensions of Â(p) and B̂(p) are (mD) × (mD), and not (mD)2 × (mD)2. As an

example, a reasonable m value for simulating the evolution of a Lmax = 50 spin 1/2 chain

(D = 2) is m ∼ 50. This means that, in order to store all the ∼ 108 complex numbers

of ĤsupB in double precision, ∼ 1.6 Gbytes of RAM is needed. Instead, each of the two

matrices Â and B̂ requires less than 200 kbytes of RAM.

B. Guess for the wave function

Even by using the tools described in the previous paragraph, the most time consuming

part of a DMRG step remains the diagonalization procedure. The step-to-step wave function

transformation required for the t-DMRG algorithm, which has been described in the previous

section, can also be used in the finite-system DMRG, in order to speed up the super-block

diagonalization.43 Indeed the Davidson or Lanczos diagonalization methods are iterative

algorithms which start from a generic wave function, and then recursively modify it, until

the eigenstate closest to the target eigenvalue is reached (up to some tolerance value, fixed

from the user). If a very good initial guess is available for the diagonalization procedure,

the number of steps required to converge to the solution can be drastically reduced and the

time needed for the diagonalization can be reduced up to an order of magnitude.
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In the finite-system algorithm the system is changing much less than in the infinite

algorithm, and an excellent initial guess is found to be the final wave function from the

previous DMRG step, after it has been written in the new basis for the current step. White’s

prediction is used in order to change the basis of the previous ground state with the correct

operators Ô, as in Eq. (16). It is also possible to speed up the diagonalization in the infinite-

system algorithm, but here the search for a state prediction is slightly more complicated (see,

e.g., Refs. 44, 45).

C. Symmetries

If the system has a global reflection symmetry, it is possible to take the environment block

equal to the system block, in the infinite-system procedure. Namely, the right enlarged block

is simply the reflection of the left one. To avoid the complication of the reflection we can

consider an alternative labelling of the sites, as shown in Fig. 7. In this case left and right

enlarged blocks are represented by exactly the same matrix.

1 L/2

LL/2+1
L/2+11 L/2 L

FIG. 7: Alternative labelling of sites, to be used in the environment reflection procedure (in case

of globally reflection-symmetric systems).

If other symmetries hold, for example conservation of angular momentum or particle

number, it is possible to take advantage of them, such to considerably reduce the CPU-time

for diagonalization. The idea is to rewrite the total Hamiltonian in a block diagonal form,

and then separately diagonalize each of them. If one is interested in the ground state, he

simply has to compare the ground state energies inside each block, in order to find the

eigenstate corresponding to the lowest energy level. One may also be interested only in the

ground state with given quantum numbers (for example in the Bose-Hubbard model one

can fix the number of particles); in this case one has to diagonalize the block Hamiltonian

corresponding to the wanted symmetry values. In order to perform this task, it is sufficient

to divide the operators for the left and right block into different symmetry sectors. Then the
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multiplication will take into account only the sectors’ combination which preserves the total

quantum number. When finding the reduced density matrix ρ, its eigenstates have also to

be symmetry-labelled. Attention must be paid when truncating to the reduced basis: it is

of crucial importance to retain whole blocks of eigenstates with the same weight, inside a

region with given quantum numbers. This helps in avoiding unwanted artificial symmetry

breaking, apart from numerical roundoff errors.

D. Sparse Matrices

Operators typically involved in DMRG-like algorithms (such as block Hamiltonians, up-

dating matrices, observables) are usually represented by sparse matrices. A well written

programming code takes advantage of this fact, thus saving large amounts of CPU-time and

memory. Namely, there are standard subroutines which list the position (row and column)

and the value of each non null element for a given sparse matrix.

E. Storage

Both the static and the time dependent DMRG require to store a great number of opera-

tors: the block Hamiltonian, the updating matrices, and if necessary the observables for each

possible block length. One useful way to handle all these operators is to group each of them

in a register, in which one index represents the length of the block. Operatively, we store

all these operators in the fast-access RAM memory. However, for very large problems one

can require more than the available RAM, therefore it is necessary to store these data in the

hard disk. The read/write operations from hard disk have to be carefully implemented, e.g.,

by performing them asyncronously, since a non optimal implementation may dramatically

slow down the program performance.

F. Algorithm Schemes

Figures 8-9 show a flow-chart schematic representation of DMRG and t-DMRG code.
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