575 research outputs found

    Measurement and Control of the Beam Energy for the SPIRAL2 Accelerator

    Get PDF
    WEPF32, http://accelconf.web.cern.ch/AccelConf/ibic2013/International audienceThe first part of the SPIRAL2 facility, which entered last year in the construction phase at GANIL in France, will be composed of an ion source, a deuteron/proton source, a RFQ and a superconducting linear accelerator delivering high intensities, up to 5 mA and 40MeV for the deuteron beams. As part of theMEBT commissioning, the beam energy will be measured on the BTI (Bench of Intermediate Test) at the exit of the RFQ. At the exit of the LINAC, the system has to measure but also control the beam energy. The control consists in ensuring that the beam energy is under a limit by taking account of the measurement uncertainty. The energy is measured by a method of time of flight, the signal is captured by non-intercepting capacitive pick-ups. This paper presents also the results obtained in terms of uncertainties and dynamics of measures

    The geochemistry of gem opals as evidence of their origin

    Get PDF
    International audienceSeventy-seven gem opals from ten countries were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) through a dilution process, in order to establish the nature of the impurities. The results are correlated to the mode of formation and physical properties and are instrumental in establishing the geographical origin of a gem opal. The geochemistry of an opal is shown to be dependant mostly on the host rock, at least for examples from Mexico and Brazil, even if modified by weathering processes. In order of decreasing concentration, the main impurities present are Al, Ca, Fe, K, Na, and Mg (more than 500 ppm). Other noticeable elements in lesser amounts are Ba, followed by Zr, Sr, Rb, U, and Pb. For the first time, geochemistry helps to discriminate some varieties of opals. The Ba content, as well as the chondritenormalized REE pattern, are the keys to separating sedimentary opals (BaN110 ppm, Eu and Ce anomalies) from volcanic opals (Bab110 ppm, no Eu or Ce anomaly). The Ca content, and to a lesser extent that of Mg, Al, K and Nb, helps to distinguish gem opals from different volcanic environments. The limited range of concentrations for all elements in precious (play-of-color) compared to common opals, indicates that this variety must have very specific, or more restricted, conditions of formation. We tentatively interpreted the presence of impurities in terms of crystallochemistry, even if opal is a poorly crystallized or amorphous material. The main replacement is the substitution of Si4+ by Al3+ and Fe3+. The induced charge imbalance is compensated chiefly by Ca2+, Mg2+, Mn2+, Ba2+, K+, and Na+. In terms of origin of color, greater concentrations of iron induce darker colors (from yellow to "chocolate brown"). This element inhibits luminescence for concentrations above 1000 ppm, whereas already a low content in U (=1 ppm) induces a green luminescence

    Emploi des profileurs acoustiques à effet Doppler (aDcp) pour étudier la structure des écoulements en rivière

    Get PDF
    Depuis une quinzaine d'années, les profileurs de vitesse acoustiques à effet Doppler (aDcp) sont de plus en plus employés par les équipes hydrométriques pour le jaugeage des cours d'eau. Ces appareils offrent la possibilité d'investiguer la bathymétrie et les vitesses d'écoulement tridimensionnelles rapidement, de manière peu intrusive, sur de vastes domaines et pour une large gamme de conditions de terrain. Le principe de fonctionnement, les stratégies de déploiement et de traitement des données mises en oeuvre sont exposés en s'appuyant sur un cas d'étude expérimental: la station hydrométrique "Saint-Georges" sur la Saône à Lyon

    Beam Intensity and Energy Control for the SPIRAL2 Facility

    Get PDF
    TUPB029 - ISBN 878-3-95450-122-9International audienceThe first part of the SPIRAL2 facility, which entered last year in the construction phase at GANIL in France, consists of an ion source, a deuteron and a proton source, a RFQ and a superconducting linear accelerator delivering high intensities, up to 5 mA and 40 MeV for the deuteron beams. Diagnostic developments have been done to control both beam intensity and energy by non-interceptive methods at the linac exit. The beam current is measured by using couples of ACCT-DCCT installed along the lines and the beam energy by using a time of flight device. This paper gives explanations about the technical solutions, the results and resolutions for measuring and controlling the beam

    Progress on the Beam Energy Monitor for the SPIRAL2 Accelerator.

    Get PDF
    WEPF29, posterInternational audienceThe first part of the SPIRAL2 project entered last year in the end of the construction phase at GANIL in France. The facility will be composed by an ion source, a deuteron/proton source, a RFQ and a superconducting linear accelerator. The driver is planned to accelerate high intensities, up to 5 mA and 40 MeV for the deuteron beams. A monitoring system was built to measure the beam energy on the BTI line (Bench of Intermediate Test) at the exit of the RFQ. As part of theMEBT commissioning, the beamenergy will be measured on the BTI with an Epics monitoring application. At the exit of the LINAC, another system will have to measure and control the beam energy. The control consists in ensuring that the beam energy stays under a limit by taking account of the measurement uncertainty. The energy is measured by a method of time of flight; the signal is captured by non-intercepting capacitive pick-ups. This paper describes the BTI monitor interface and presents the system evolution following the design review

    Intensity Control in GANIL's Experimental Rooms

    Get PDF
    TUPF31International audienceThe safety re-examination of existing GANIL facilities requires the implementation of a safety system which makes a control of the beam intensity sent to the experimental rooms possible. The aim is to demonstrate that beam intensities stay below the authorized limits defined by the safety GANIL group. The challenge is to be able to measure by a non-interceptive method a wide range of beam intensities from 5nA to 5 A with a maximum uncertainty of 5%, independently of the frequency (from 7 to 14.5MHz) and the beam energy (from 1.2 to 95MeV.A). After a comparative study, two types of high frequency diagnostics were selected, the capacitive pick-up and the fast current transformer. This paper presents the signal simulations from diagnostics with different beam energies, the uncertainty calculations and the results of the first tests with beam

    Analytic theory of narrow lattice solitons

    Full text link
    The profiles of narrow lattice solitons are calculated analytically using perturbation analysis. A stability analysis shows that solitons centered at a lattice (potential) maximum are unstable, as they drift toward the nearest lattice minimum. This instability can, however, be so weak that the soliton is ``mathematically unstable'' but ``physically stable''. Stability of solitons centered at a lattice minimum depends on the dimension of the problem and on the nonlinearity. In the subcritical and supercritical cases, the lattice does not affect the stability, leaving the solitons stable and unstable, respectively. In contrast, in the critical case (e.g., a cubic nonlinearity in two transverse dimensions), the lattice stabilizes the (previously unstable) solitons. The stability in this case can be so weak, however, that the soliton is ``mathematically stable'' but ``physically unstable''

    Stability and symmetry-breaking bifurcation for the ground states of a NLS with a δ\delta^\prime interaction

    Full text link
    We determine and study the ground states of a focusing Schr\"odinger equation in dimension one with a power nonlinearity ψ2μψ|\psi|^{2\mu} \psi and a strong inhomogeneity represented by a singular point perturbation, the so-called (attractive) δ\delta^\prime interaction, located at the origin. The time-dependent problem turns out to be globally well posed in the subcritical regime, and locally well posed in the supercritical and critical regime in the appropriate energy space. The set of the (nonlinear) ground states is completely determined. For any value of the nonlinearity power, it exhibits a symmetry breaking bifurcation structure as a function of the frequency (i.e., the nonlinear eigenvalue) ω\omega. More precisely, there exists a critical value \om^* of the nonlinear eigenvalue \om, such that: if \om_0 < \om < \om^*, then there is a single ground state and it is an odd function; if \om > \om^* then there exist two non-symmetric ground states. We prove that before bifurcation (i.e., for \om < \om^*) and for any subcritical power, every ground state is orbitally stable. After bifurcation (\om =\om^*+0), ground states are stable if μ\mu does not exceed a value μ\mu^\star that lies between 2 and 2.5, and become unstable for μ>μ\mu > \mu^*. Finally, for μ>2\mu > 2 and \om \gg \om^*, all ground states are unstable. The branch of odd ground states for \om \om^*, obtaining a family of orbitally unstable stationary states. Existence of ground states is proved by variational techniques, and the stability properties of stationary states are investigated by means of the Grillakis-Shatah-Strauss framework, where some non standard techniques have to be used to establish the needed properties of linearization operators.Comment: 46 pages, 5 figure
    corecore