915 research outputs found

    The non-integrability of the Zipoy-Voorhees metric

    Full text link
    The low frequency gravitational wave detectors like eLISA/NGO will give us the opportunity to test whether the supermassive compact objects lying at the centers of galaxies are indeed Kerr black holes. A way to do such a test is to compare the gravitational wave signals with templates of perturbed black hole spacetimes, the so-called bumpy black hole spacetimes. The Zipoy-Voorhees (ZV) spacetime (known also as the γ\gamma spacetime) can be included in the bumpy black hole family, because it can be considered as a perturbation of the Schwarzschild spacetime background. Several authors have suggested that the ZV metric corresponds to an integrable system. Contrary to this integrability conjecture, in the present article it is shown by numerical examples that in general ZV belongs to the family of non-integrable systems.Comment: 10 pages, 13 figure

    Periodic Orbits and Escapes in Dynamical Systems

    Full text link
    We study the periodic orbits and the escapes in two different dynamical systems, namely (1) a classical system of two coupled oscillators, and (2) the Manko-Novikov metric (1992) which is a perturbation of the Kerr metric (a general relativistic system). We find their simple periodic orbits, their characteristics and their stability. Then we find their ordered and chaotic domains. As the energy goes beyond the escape energy, most chaotic orbits escape. In the first case we consider escapes to infinity, while in the second case we emphasize escapes to the central "bumpy" black hole. When the energy reaches its escape value a particular family of periodic orbits reaches an infinite period and then the family disappears (the orbit escapes). As this family approaches termination it undergoes an infinity of equal period and double period bifurcations at transitions from stability to instability and vice versa. The bifurcating families continue to exist beyond the escape energy. We study the forms of the phase space for various energies, and the statistics of the chaotic and escaping orbits. The proportion of these orbits increases abruptly as the energy goes beyond the escape energy.Comment: 28 pages, 23 figures, accepted in "Celestial Mechanics and Dynamical Astronomy

    Asymptotic Orbits in Barred Spiral Galaxies

    Full text link
    We study the formation of the spiral structure of barred spiral galaxies, using an NN-body model. The evolution of this NN-body model in the adiabatic approximation maintains a strong spiral pattern for more than 10 bar rotations. We find that this longevity of the spiral arms is mainly due to the phenomenon of stickiness of chaotic orbits close to the unstable asymptotic manifolds originated from the main unstable periodic orbits, both inside and outside corotation. The stickiness along the manifolds corresponding to different energy levels supports parts of the spiral structure. The loci of the disc velocity minima (where the particles spend most of their time, in the configuration space) reveal the density maxima and therefore the main morphological structures of the system. We study the relation of these loci with those of the apocentres and pericentres at different energy levels. The diffusion of the sticky chaotic orbits outwards is slow and depends on the initial conditions and the corresponding Jacobi constant.Comment: 17 pages, 24 figure

    How to observe a non-Kerr spacetime

    Full text link
    We present a generic criterion which can be used in gravitational-wave data analysis to distinguish an extreme-mass-ratio inspiral into a Kerr background spacetime from one into a non-Kerr background spacetime. The criterion exploits the fact that when an integrable system, such as the system that describes geodesic orbits in a Kerr spacetime, is perturbed, the tori in phase space which initially corresponded to resonances disintegrate so as to form the so called Birkhoff chains on a surface of section, according to the Poincar\'{e}-Birkhoff theorem. The KAM curves of these islands in such a chain share the same ratio of frequencies, even though the frequencies themselves vary from one KAM curve to another inside an island. On the other hand, the KAM curves, which do not lie in a Birkhoff chain, do not share this characteristic property. Such a temporal constancy of the ratio of frequencies during the evolution of the gravitational-wave signal will signal a non-Kerr spacetime which could then be further explored.Comment: 4 pages, 2 figure

    Orbits in the H2O molecule

    Get PDF
    We study the forms of the orbits in a symmetric configuration of a realistic model of the H2O molecule with particular emphasis on the periodic orbits. We use an appropriate Poincar\'e surface of section (PSS) and study the distribution of the orbits on this PSS for various energies. We find both ordered and chaotic orbits. The proportion of ordered orbits is almost 100% for small energies, but decreases abruptly beyond a critical energy. When the energy exceeds the escape energy there are still non-escaping orbits around stable periodic orbits. We study in detail the forms of the various periodic orbits, and their connections, by providing appropriate stability and bifurcation diagrams.Comment: 21 pages, 14 figures, accepted for publication in CHAO

    Orbits in a non-Kerr Dynamical System

    Full text link
    We study the orbits in a Manko-Novikov type metric (MN) which is a perturbed Kerr metric. There are periodic, quasi-periodic, and chaotic orbits, which are found in configuration space and on a surface of section for various values of the energy E and the z-component of the angular momentum Lz. For relatively large Lz there are two permissible regions of non-plunging motion bounded by two closed curves of zero velocity (CZV), while in the Kerr metric there is only one closed CZV of non-plunging motion. The inner permissible region of the MN metric contains mainly chaotic orbits, but it contains also a large island of stability. We find the positions of the main periodic orbits as functions of Lz and E, and their bifurcations. Around the main periodic orbit of the outer region there are islands of stability that do not appear in the Kerr metric. In a realistic binary system, because of the gravitational radiation, the energy E and the angular momentum Lz of an inspiraling compact object decrease and therefore the orbit of the object is non-geodesic. In fact in an EMRI system the energy E and the angular momentum Lz decrease adiabatically and therefore the motion of the inspiraling object is characterized by the fundamental frequencies which are drifting slowly in time. In the Kerr metric the ratio of the fundamental frequencies changes strictly monotonically in time. However, in the MN metric when an orbit is trapped inside an island the ratio of the fundamental frequencies remains constant for some time. Hence, if such a phenomenon is observed this will indicate that the system is non integrable and therefore the central object is not a Kerr black hole.Comment: 19 pages, 18 figure

    Probing the local dynamics of periodic orbits by the generalized alignment index (GALI) method

    Full text link
    As originally formulated, the Generalized Alignment Index (GALI) method of chaos detection has so far been applied to distinguish quasiperiodic from chaotic motion in conservative nonlinear dynamical systems. In this paper we extend its realm of applicability by using it to investigate the local dynamics of periodic orbits. We show theoretically and verify numerically that for stable periodic orbits the GALIs tend to zero following particular power laws for Hamiltonian flows, while they fluctuate around non-zero values for symplectic maps. By comparison, the GALIs of unstable periodic orbits tend exponentially to zero, both for flows and maps. We also apply the GALIs for investigating the dynamics in the neighborhood of periodic orbits, and show that for chaotic solutions influenced by the homoclinic tangle of unstable periodic orbits, the GALIs can exhibit a remarkable oscillatory behavior during which their amplitudes change by many orders of magnitude. Finally, we use the GALI method to elucidate further the connection between the dynamics of Hamiltonian flows and symplectic maps. In particular, we show that, using for the computation of GALIs the components of deviation vectors orthogonal to the direction of motion, the indices of stable periodic orbits behave for flows as they do for maps.Comment: 17 pages, 9 figures (accepted for publication in Int. J. of Bifurcation and Chaos

    Resonant normal form and asymptotic normal form behavior in magnetic bottle Hamiltonians

    Full text link
    We consider normal forms in `magnetic bottle' type Hamiltonians of the form H=12(ρρ2+ω12ρ2)+12pz2+hotH=\frac{1}{2}(\rho^2_\rho+\omega^2_1\rho^2) +\frac{1}{2}p^2_z+hot (second frequency ω2\omega_2 equal to zero in the lowest order). Our main results are: i) a novel method to construct the normal form in cases of resonance, and ii) a study of the asymptotic behavior of both the non-resonant and the resonant series. We find that, if we truncate the normal form series at order rr, the series remainder in both constructions decreases with increasing rr down to a minimum, and then it increases with rr. The computed minimum remainder turns to be exponentially small in 1ΔE\frac{1}{\Delta E}, where ΔE\Delta E is the mirror oscillation energy, while the optimal order scales as an inverse power of ΔE\Delta E. We estimate numerically the exponents associated with the optimal order and the remainder's exponential asymptotic behavior. In the resonant case, our novel method allows to compute a `quasi-integral' (i.e. truncated formal integral) valid both for each particular resonance as well as away from all resonances. We applied these results to a specific magnetic bottle Hamiltonian. The non resonant normal form yields theorerical invariant curves on a surface of section which fit well the empirical curves away from resonances. On the other hand the resonant normal form fits very well both the invariant curves inside the islands of a particular resonance as well as the non-resonant invariant curves. Finally, we discuss how normal forms allow to compute a critical threshold for the onset of global chaos in the magnetic bottle.Comment: 20 pages, 7 figure

    Gravitational Wave Signals from Chaotic System: A Point Mass with A Disk

    Full text link
    We study gravitational waves from a particle moving around a system of a point mass with a disk in Newtonian gravitational theory. A particle motion in this system can be chaotic when the gravitational contribution from a surface density of a disk is comparable with that from a point mass. In such an orbit, we sometimes find that there appears a phase of the orbit in which particle motion becomes to be nearly regular (the so-called ``stagnant motion'') for a finite time interval between more strongly chaotic phases. To study how these different chaotic behaviours affect on observation of gravitational waves, we investigate a correlation of the particle motion and the waves. We find that such a difference in chaotic motions reflects on the wave forms and energy spectra. The character of the waves in the stagnant motion is quite different from that either in a regular motion or in a more strongly chaotic motion. This suggests that we may make a distinction between different chaotic behaviours of the orbit via the gravitational waves.Comment: Published in Phys.Rev.D76:024018,200
    corecore