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We study the forms of the orbits in a symmetric configuration of a realistic model of the H2O
molecule with particular emphasis on the periodic orbits. We use an appropriate Poincare´ surface of
section~PSS! and study the distribution of the orbits on this PSS for various energies. We find both
ordered and chaotic orbits. The proportion of ordered orbits is almost 100% for small energies, but
decreases abruptly beyond a critical energy. When the energy exceeds the escape energy there are
still nonescaping orbits around stable periodic orbits. We study in detail the forms of the various
periodic orbits, and their connections, by providing appropriate stability and bifurcation diagrams.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1356068#

Small molecules are quantum systems, but their classical
study reveals very important features. The method of the
Poincarésurface of section plays a prominent role in such
a study. A difficulty that appears often in realistic sys-
tems is that one cannot always choose a flat Poincare´
surface of section that intersects all periodic orbits. In
this paper we use a curved Poincare´ surface of section in
order to study a realistic model of the H2O molecule. We
find the phase plots for different values of the energy of
the molecule. Then we find all the periodic orbits of pe-
riod 1 and 2 and compute their stability and bifurcation
diagrams.

I. INTRODUCTION

Two dimensional Hamiltonian systems are often studied
using the technique of the Poincare´ map, where one reduces
the four dimensional, continuous time flow of the system to
an associatedtwo dimensionaldiscrete map, by choosing an
appropriate surface of section. Usually a flat surface of sec-
tion is chosen and the orbits that cross this surface with a
particular direction are the consequents of the Poincare´ map.

For many systems a flat Poincare´ surface of section
~PSS! is not suitable since there are orbits of these systems
that do not cross the surface of section. In these cases another
choice must be made. In this paper we study a symmetric
model of the H2O molecule where we have chosen a curved
PSS. This choice for the PSS permits us to study all the
periodic orbits of the system for all the values of energy.

The study of periodic orbits and phase plots in realistic
models of simple molecules, such as the model we are study-
ing in this paper, gives interesting information that can be
compared with the behavior of the corresponding quantum
system and with experiments.1,2 In particular the relation be-
tween classical periodic orbits and quantum mechanical
eigenfunctions was emphasized by several authors, starting
with the work of Gutzwiller.3 The most surprising result was
that in many cases one simple periodic orbit determines the

basic form of the eigenfunction.4–7 Further details can be
found by using more periodic orbits8 and the asymptotic
structures around unstable periodic orbits.9

A partial study of periodic orbits in the H2O molecule
has been done by Lawton and Child,10,11Jafféand Brumer,12

and by Kellman,13 who emphasize the bifurcation of the lo-
cal stretching modes from the normal stretching vibrational
mode. These papers contain references to previous work on
orbits in the H2O molecule.

We describe the model of the H2O molecule in Sec. II,
and use a convenient set of coordinates in defining the
Hamiltonian. We calculate the equipotential surfaces for the
symmetric molecule~Sec. III! and in Sec. IV we define an
appropriate PSS and discuss its properties.

Then we study in detail the phase plots on such a PSS
and find the main islands of stability and the chaotic zones
~Sec. V!. We calculate the main periodic orbits and their
bifurcations and stability in Sec. VI. Finally we summarize
our conclusions in Sec. VII.

II. A MODEL FOR THE H2O MOLECULE

For the study of the H2O molecule we have chosen a
simple model that is well suited for classical calculations.14

The potential energy has the form

VHHO5VO
(1)
• f ~R1 ,R2 ,R3!1VOH

(2)~R1!1VOH
(2)~R2!

1VHH
(2)~R3!1VHHO

(3) ~R1 ,R2 ,R3!, ~1!

whereR1 , R2 , andR3 are the O–H1, O–H2, and H1– H2

distances, respectively. Distances are measured in Å and en-
ergies in eV. The single-body term in Eq.~1! is given by

VO
(1)
• f ~R1 ,R2 ,R3!51.958•

1

2 F12tanhS 3r32r12r2

2
a D G ,

~2!

where a51.9018, r15R120.9572, r25R220.9572, and
r35R321.5139. The two-body terms are given by the equa-
tions

VOH
(2)~Ri !52D1~11a1r i1a2r i

21a3r i
3!exp$2a1r i%, i 51,2

~3!a!Electronic mail: gcontop@cc.uoa.gr
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where r i5Ri20.9696, a154.507, a254.884, a353.795,
andD154.6211,

VHH
(2)~R3!52D2~11a4r 31a5r 3

21a6r 3
3!exp$2a4r 3%, ~4!

where r 35R320.7414, a453.961, a554.064, a653.574,
andD254.7472. Finally the three-body term is given by

VHHO
(3) ~R1 ,R2 ,R3!50.018 92•P~r1 ,r2 ,r3!

3)
i 51

3

~12tanh~g ir i /2!!, ~5!

whereg15g252.6, g351.5, andP(r1 ,r2 ,r3) is the poly-
nomial

P~r1 ,r2 ,r3!511(
i 51

3

Cir i1(
i 51

3

(
j 5 i

3

Ci j r ir j

1(
i 51

3

(
j 5 i

3

(
k5 j

3

Ci jkr ir jrk

1(
i 51

3

(
j 5 i

3

(
k5 j

3

(
l 5k

3

Ci jkl r ir jrkr l . ~6!

The coefficientsCi , Ci j , Ci jk , andCi jkl are defined in the
paper by Murrell and Carter.14

Instead of the original coordinatesR1 , R2 , andR3 we
will use the scaled Jacobi coordinates SR, Sr,u ~Fig. 1! that
are defined by the equations

SR5
1

2a
A2R1

212R2
22R3

2,

Sr5aR3 , ~7!

cosu5
R2

22R1
2

2a SRR3
,

wherea is given by the relation

a5H mO12mH

4mO
J 1/4

. ~8!

The inverse relations are

R15AS Sr

2a D 2

1~a SR!22SR Sr cosu,

R25AS Sr

2a D 2

1~a SR!21SR Sr cosu, ~9!

R35
Sr

a
.

The potential function given by Eqs.~1!–~6! can be writ-
ten in scaled Jacobi coordinates using Eqs.~9!.

The kinetic energy of the H2O molecule has the form

T5
1

2m F PSR
2 1PSr

2 1S 1

SR2
1

1

Sr2
D Pu

2G , ~10!

wherePSR, PSr, andPu are the conjugate momenta of SR,
Sr, andu, respectively. The parameterm is defined by the
relation

m5A mOmH
2

mO12mH
5

mH

2a2
. ~11!

The Hamiltonian can now be written as the sum of the
kinetic and potential energies

H~PSR,PSr,Pu ,SR,Sr,u!5T~PSR,PSr,Pu ,SR,Sr!

1VHHO~SR,Sr,u!. ~12!

III. EQUIPOTENTIAL SURFACES

If we consider initial conditions with

u5p/2

and

Pu50, ~13!

we can easily see thatu̇50 and Ṗu50, meaning that the
submanifold of the phase space determined by Eqs.~13! is
invariant under the Hamiltonian flow and hence we can per-
form a standard type reduction in order to get a two degrees
of freedom Hamiltonian system on this submanifold.

The reduced HamiltonianH̃ is related to the original
Hamiltonian through the relation

H̃~PSR,PSr,SR,Sr!5H~PSR,PSr,0,SR,Sr,p/2!5E ~14!

and its numerical value is the energyE of the molecule. This
Hamiltonian describes the symmetric water molecule, where
the distances O–H1 and O–H2 are equal.

The equipotential surfaces for the symmetric molecule
are shown in Fig. 2. The potential has two minima at SR
560.676 065, Sr51.310 82, where it takes the valueE0

5210.047. Between the two minima there is a saddle point
at SR50, Sr51.6057, where the potential takes the value
E1528.993. ForE,E1 orbits are confined inside the po-
tential well around a minimum of the potential. ForE.E1

the two wells join and orbits can pass from one well to the
other.

For values of energy greater thanE2522.7892 orbits
can escape to infinity following the two horizontal channels
at the left and the right of Fig. 2. Escape through these chan-
nels corresponds to a configuration of the molecule where
the oxygen atom has become unbounded and the two hydro-
gen atoms form an H2 molecule. Although forE.E2 most
orbits escape there are still bounded orbits as one can see in
Fig. 6~c! below.

FIG. 1. Coordinates for the H2O molecule.
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IV. A POINCARÉ SURFACE OF SECTION

A PSS should intersect almost all the orbits.15 Such in-
tersections occur naturally if the potential has a plane of
symmetry. However this does not happen in the present case.
On the other hand many orbits have a tendency to pass
through a local minimum of the potential~although this is
not always the case!. Thus in order to find a suitable Poin-
caré surface of section we calculated numerically for each
value of SR the corresponding value of Sr, where the poten-
tial function has a minimum. Then we fitted the numerically
determined function Sr5 f num(SR) by the analytic form

Sr5 f ~SR!5a f̄ ~aSR!, ~15!

where

f̄ ~x!50.740 35010.482 392 exp~23.342 09x2!

10.631 258 exp~20.112 678x4! ~16!

anda is given by Eq.~8!.
This curve is given in Fig. 2. We determined that the

difference between the numerically determined curve Sr
5 f num(SR) and the fitted analytic form is very small. For our
computations we used the fitted form, given by Eqs.~15! and
~16!.

Contrary to the textbook approach we have not chosen
SR andPSR as the two coordinates on the PSS. If we had
made such a choice we would have the following problem.
Consider the orbits of Fig. 3. Both orbits cross the PSS at the

same point with coordinates SR, Sr with the same momen-
tum PSR and they both have the same energyE. Then we
solve Eq.~14! in order to determinePSr, and we get two
solutions6PSr. From Fig. 3 we can see that both solutions
are valid, but they correspond to different orbits. This in turn
means that on such a PSS different orbits would overlap and
this is not permissible.

In order to solve this problem we have chosen as coor-
dinates on the PSS, SR and the componentPt of the momen-
tum vectorP5(PSR,PSr) tangential to the curve in Eq.~15!.
Thus the PSS is determined by the coordinate SR along the
curve of Fig. 2 and the componentPt of the momentum.
Some typical orbits on the plane (SR,Sr) are shown in Fig. 4.

A variable that is canonically conjugate toPt is

Qt5E
0

SR
A11 f 8~x!dx. ~17!

In fact the symplectic form in the variablesQt , Pt is

V5~dQt!`~dPt! ~18!

and it can be shown that this is preserved. The form Eq.~18!
in the variables SR,Pt is written

V5~11 f 8~SR!!1/2~dSR!`~dPt!. ~19!

Thus the two-formdSR̀ dPt is not preserved in general. In
our study we use the variable SR instead ofQt because it is
not practical to computeQt numerically.

Although the coordinates SR andPt are not canonically
conjugate, this does not cause any problems in the study of
the system. In fact the integration is performed in the canoni-
cal coordinates SR, Sr,PSR, PSr and the coordinates SR and
Pt are used only on the PSS. The result is that the phase plots
on the PSS are only slightly distorted relative to the phase
plots that we would get if we had chosen canonically conju-
gate coordinates on the PSS.

V. PHASE PLOTS ON THE POINCARÉ SURFACE OF
SECTION

In Figs. 5 and 6 we give the distribution of the orbits on
the Poincare´ surface of section for various values of the en-
ergy E.

FIG. 2. Equipotential surfaces for the symmetric H2O molecule. The solid
line is the Poincare´ surface of section.

FIG. 3. The thick line gives the PSS. OrbitsA and B cross the line at the
same point with the samePSR but oppositePSr .

FIG. 4. Orbitsa andc belong in the islands of 1a and 1c, respectively. The
orbit b lies between these two islands. The thick line represents the PSS.
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The energy of Fig. 5~a! is close to the minimum of the
potential. In this plot practically all the orbits are ordered,
defining closed invariant curves. Many invariant curves form
two sets around two stable periodic orbits. The upper one is
the orbit 1a and the lower one the orbit 1c ~see Sec. VI!.
However there are also invariant curves between these two
sets, that start on the left or upper side of the boundary, and
terminate on the right side of the boundary. In Fig. 4 we can
see why this is happening. In this figure we see three orbits
for this value of the energy in configuration space. The orbits
labeled asa andc belong to the islands of the periodic orbits
1a and 1c, respectively. We see that the PSS crosses the
outline of these orbits at two nonadjacent sides. When this is
happening we get closed invariant curves on the PSS. But for
the orbit labeledb, which lies between the two islands of Fig.
5~a!, the PSS crosses the outline of this orbit at two adjacent
sides ~Fig. 4!, and on the PSS we get an open invariant
curve.

Figures 5~b!, 5~c!, and 5~d! refer to larger energies and
are given in a larger scale than Fig. 5~a!. Orbit 1c is contin-
ued as the double period orbit 2c in Fig. 5~b!, the second
point being near the left limit of the figure. The islands
around both points 2c are now larger. In this case the chaotic
orbits are also insignificant.

In Fig. 5~c! the orbit 2c is unstable~and is represented
by two points at the centers of two dark regions! and it has
produced four stable points by bifurcation that correspond to
a stable orbit 4c of period 4, surrounded by islands of sta-
bility above and below each point of orbit 2c. In this case
there are some small chaotic zones around each unstable or-
bit.

The chaotic zones have grown considerably in Fig. 5~d!.
In this case there are still four islands of stability 4c, as in
Fig. 5~c!, but very small. All the rest of the area previously

occupied by bifurcations of orbit 2c and their corresponding
islands are now chaotic. This case is just above the limiting
value of the energyE1528.993 at which the two potential
wells join into one. Thus there is one symmetric figure for
SR,0 that joins Fig. 5~d! at the small throat near the point
~0,0!. The point~0,0! represents orbit 1b, which is unstable
and produces a large chaotic region around it.

In Fig. 6~a! we give the phase plot for a larger value of
the energy (E528) when the two potential wells are well
connected at SR50 ~see the equipotentials of Fig. 2!. Figure
6~a! is symmetric with respect to the axis SR50. The appar-
ent asymmetries in the islands of this figure are due to the
use of nonsymmetric initial conditions on both sides of the
axis SR50. In this case orbit 1a is unstable and has gener-
ated by bifurcation orbit 2a, surrounded by two islands of
stability on the right half of Fig. 6~a!. A symmetric orbit 1a8
and its bifurcations 2a8 appear on the left side of the figure.

FIG. 5. Phase plots for small values of the energy:~a! E529.9, ~b!
E529.3, ~c! E529.1, and~d! E528.99.

FIG. 6. Phase plots for energies:~a! E528.0, ~b! E523.0, and
~c! E522.5.

330 Chaos, Vol. 11, No. 2, 2001 K. Efstathiou and G. Contopoulos



Orbits 1a, 1a8 have generated two chaotic domains that sur-
round the islands 2a ~respectively, 2a8!. At the lower left
and upper right sides of this figure there are two elongated
islands that belong to the family 2b. The center of the figure
~0,0! represents again the unstable orbit 1b, which generates
a large chaotic domain.

Most of Fig. 6~a! is covered by one chaotic orbit for
which we have calculated 6•104 points. We see that the
points of the chaotic orbit are not distributed uniformly on
the PSS. This is a transient phenomenon and is due to sticki-
ness of the orbits near cantori surrounding islands 2a, or
islands 2a8. These cantori form partial barriers. Orbits need
a long time in order to cross the cantori and for considerable
times the regions inside and outside the cantori seem sepa-
rated. This causes the apparent nonuniformity of the distri-
bution of points on the PSS. But after a larger number of
iterations the distribution of the points becomes uniform.

The phase plots for larger values ofE have some simi-
larity to Fig. 6~a! but there are also differences. For example,
in Fig. 6~b! we see that there are two symmetric islands, one
on each side of the axis SR50. These islands belong to the
irregular family 2b, which is symmetric with respect to the
point (0,0) ~see Sec. VI!, and not to two different families
like families 1a and 1a8 of Fig. 6~a!. The chaotic domain in
this case is again very large.

For E above the energyE5E2 orbits can escape. In Fig.
6~c! we can see the islands around an orbit that belongs in
family 2b. The orbits that are outside these islands escape
and this is why the area between the islands is empty.

The percentage of the area of the PSS covered by orga-
nized orbits as a function of the energy is presented in Fig. 7.
We see that for values of energy close toE15210.047~the
minimum value of the potential! almost all orbits are orga-
nized. An abrupt change happens at values of energy around
E529. For E.29 most of the PSS is filled by chaotic
orbits. There are islands of stability for even larger values of
the energy, and we notice that for values of the energy close
to E523 the percentage of the organized orbits increases,
although it remains below 0.2~or 20%). This increase is due
to the increase in the size of the island around family 2b.
The islands continue to increase in size even whenE be-
comes larger than the escape energyE2522.79, but for still
largerE they become smaller.

VI. PERIODIC ORBITS

We have computed the most important families of peri-
odic orbits for the symmetric water molecule. The stability
diagram of the period-1 families as a function of the energy
of the molecule can be seen in Fig. 8~a!. Such a diagram
gives the He´non stability parameter16 a of each family as a

FIG. 7. Proportion of regular orbits, as a function of the energyE.

FIG. 8. Stability diagrams: ~a! families 1a, 1b, 1c, ~b! families
1a, 1c, 2c ~continuation of 1c!, ~c! family 1a and its period 2 bifurcations,
and ~d! families 2b, 2r , 2z.
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function ofE. For a period-k orbit of an area-preserving map
s, the Hénon stability parameter is defined by the relation

a5 1
2Trace~D@sk#~x0!!, ~20!

wherex0 is a point of the periodic orbit andD@sk#(x0) is the
Jacobian matrix ofs+¯+s ~k times! evaluated atx0 . When
the stability parameter of a periodic orbit lies in the interval
from 21 to 1 the orbit is stable, otherwise it is unstable.

Since the Poincare´ map is not symplectic, as we have
explained in Sec. IV, the determinant of the Jacobian matrix
Ds(x) is not equal to 1 for arbitrary pointsx on the PSS.
However for a periodic orbit with periodk the determinant of
D@sk# is exactly equal to 1. In fact, using Eq.~19! it can be
proven that the determinant of the Jacobian matrix ofsk at a
point x05(SR0,Pt0) is given by the relation

detD@sk#~x0!5A11 f 8~SR0!

11 f 8~SRk!
, ~21!

wherexk5sk(x0)5(SRk ,Ptk) is thekth image ofx0 . If an
orbit is periodic with periodk, then SR05SRk , hence
detD@sk#(x0)51.

For values of energy close to the minimum value of
the potential (E5E15210.047) there exist two period-1
families. We call these families 1a and 1c. They correspond
to the two normal modes of the water molecule. In Fig. 9
we can see the corresponding periodic orbits atE
5210.046 64 in configuration space.

Family 1c has a peculiar behavior that is the result of
our choice of the PSS. This family is born atE5210.047,
but beyond the energyE529.331 it appears as a period-2
family, which we call 2c @Fig. 8~b!#. We note that no bifur-
cation appears here. In order to understand what is happen-
ing, we should see Fig. 10. In this figure we see one orbit of
family 1c that intersects the PSS only at one point, as ex-
pected for small energies. An orbit of the same family for a
larger value of the energy intersects the PSS at two points
and thus it appears as a period-2 orbit. We will call the
change of the apparent period of a family that is not related
to a bifurcation, atransition. We note here that there would
be a transition even if we had chosen, as the PSS, the nu-
merically determined curve of the minima of the potential

instead of the fitted function. Family 2c becomes unstable at
E529.164 and generates by bifurcation two stable period 4
families.

For values of the energy betweenE5E15210.047 and
E527.2 the largest islands on the PSS are around family 1a
and family 2a, which bifurcate from 1a @Figs. 5 and 6~a!#.
Family 1a is created at the minimum energy of the system
E5E15210.047 as a stable family and becomes unstable at
E528.95 @Fig. 8~a!#. At this value of E it generates by
bifurcation the period-2 family 2a @Fig. 8~c!#. Notice that
when the stability parametera of a period-1 orbit is equal to
21 the same orbit described twice has a stability parameter
11. Family 2a starts atE528.95 with stability parameter
a51, and exists for larger values ofE. Family 1a remains
unstable untilE522.47, where the period-2 family 2e is
generated by bifurcation from family 1a, existing for smaller
values ofE @Fig. 8~c!#.

Family 2a for E526.82 becomes unstable by crossing
the linea521 and becomes stable again forE525.62. The
stability parameter of family 2a takes the valuea51 at
E525.568. At this energy an unstable period-2 family,
which we call 2f , is created. Family 2e becomes unstable
~going from larger to smaller values of the energy! for E
522.987 and becomes stable again forE525.661. The
stability parameter of family 2e takes the valuea51 at E
525.675. At this energy the unstable family 2f , which was
created at a larger energy from 2a, joins 2e @Fig. 8~c!#. The
bifurcation diagram of families 1a, 2a, 2e, 2f , 1b is
shown in Fig. 11. This figure gives the value of SR for each
energy. We see that family 2f exists only in a small interval
of values ofE and joins family 1a at its maximumE and
family 2e at its minimum E. This explains why families
2a, 2e, and 2f form a loop in Fig. 8~c!.

BetweenE522.47 andE522.00 family 1a remains
stable. At E522.00 family 1a joins family 1b, and for
larger values of energy family 1a does not exist. We may
thus say that family 1a is a bifurcation of family 1b. Family
1b is represented by the point~0,0! on the surface of section.
It is created at the energyE2528.993 @Fig. 8~a!#, at the
saddle point of the potential~Fig. 2!, with coordinates
SR50, Sr51.6057. For energies somewhat larger thanE2

FIG. 9. Periodic orbits 1a and 1c for E5210.046 64 in configuration
space. Line~a! represents the numerically determined minima of the poten-
tial and the line;~b! represents the selected PSS.

FIG. 10. The transition 1c→2c. Orbit a (E529.8) belongs to family 1c.
Orbit b (E529.2) belongs to family 2c.
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family 1b is unstable~a59.73!. As E increases, the stability
parameter of family 1b becomes larger, but later~for larger
E) it becomes smaller. AtE522.00 this family becomes
stable. It becomes unstable again atE521.50 with stability
parametera521. For largerE family 1b is unstable, but at
E520.0205 it becomes stable again untilE520.0110,
where it becomes unstable by crossing the linea51 and thus
generating another period-1 family. As the energy ap-
proaches the energyE50 the stability parameter of family
1b tends to infinity, and the return time~period! of the peri-
odic orbit also tends to infinity.

In Fig. 12 we can see that periodic orbits of family 1b
appear as straight lines in configuration space with SR50
and varying Sr. In physical space this corresponds to a colin-
ear configuration of the molecule with the oxygen atom in
the middle and the two hydrogen atoms oscillating sym-
metrically at each side of the oxygen atom. For large inter-
vals of the energy this configuration is unstable. In Fig. 12
we can also see how the periodic orbits of family 1a appear
in configuration space for different values of the energy. We
note that there is also a family 1a8 that is symmetric to
family 1a with respect to the axis SR50. As the energy
increases families 1a and 1a8 approach family 1b, and join
1b for E522.00.

At energyE528.06 two irregular period-2 families are
created@Fig. 8~d!#. Irregular families are created in pairs
~one stable and one unstable! by a tangent bifurcation. This

means that irregular orbits are not created by the bifurcation
of an existing periodic orbit, but from each other. The stable
family is called 2b and the unstable one is called 2r . The
stability parameter of family 2r grows from a51 to
a517.12 as the energy increases and then decreases, until it
reaches the valuea52.77 at E526.454. For this energy
family 2r appears as a period-4 family and we have a tran-
sition, as in the case of the transition 1c→2c.

The stable family 2b plays an important role in the
structure of the phase space. The stability diagram of family
2b and the period-2 families that bifurcate from 2b can be
seen in Fig. 8~d!. The diagram is very complex, much more
than the stability diagram of family 1a. Here we consider
only family 2b and its equal period bifurcations. The stabil-
ity parameter of family 2b crosses~or just reaches! the hori-
zontal linea51 eight times. Each time this happens a family
of period-2 orbits bifurcates from family 2b. For E50.27
family 2b joins a new unstable family 2z and they both
disappear there, i.e., they do not exist for largerE.

Families 2b, 2r , and 2z are symmetric with respect to
the point~0,0!. The families that bifurcate from 2b are not
symmetric but they come in symmetric pairs. In Fig. 8~d!
some families that have bifurcated from family 2b suddenly
terminate because they are going through transitions. Some
orbits of family 2b can be seen in Fig. 13. In physical space
these orbits correspond to oscillations of the oxygen atom
between the two symmetric minima of the potential.

The island around the orbits of family 2b is the largest
island for values of energy close toE523. Generally, from
E528 to E523 the island around 2b occupies a signifi-
cant measure of the PSS.

In the present paper we studied the stability~and insta-
bility ! of the various types of orbits on the plane of symme-
try u5p/2 andPu50. However orbits that are stable on this
plane may be unstable in a direction perpendicular to this
plane. An example is shown in Fig. 14, where we have cal-
culated two stability parameters for family 2a. One is the
usual stability parametera, as in Fig. 8~c!, and the other is
the stability parameterau for deviations out of the symmetry
plane. We see that while family 2a is stable with respect to
deviation on the symmetry plane it becomes unstable with
respect to perpendicular deviations forE528. At the tran-
sition to instability there is a bifurcation of a new period 2

FIG. 11. Bifurcation diagram of family 1a.

FIG. 12. Periodic orbits of families 1b ~axis SR50! and 1a. The dotted line
represents the PSS.

FIG. 13. Orbits of family 2b in configuration space. The dotted line repre-
sents the PSS.
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family, which extends out of the symmetry plane and is ini-
tially stable.

The study of the stability of orbits in a direction out of
the symmetry plane is important in many cases. Such studies
in galactic dynamics have been made for a long time.17 A
detailed study of the stability and the bifurcations of periodic
orbits with respect to the third dimension in the H2O mol-
ecule will be given in a future paper.

VII. SUMMARY AND CONCLUSIONS

We have made a systematic study of the classical orbits
for the symmetric configuration of a realistic model of the
H2O molecule. In order to study the distribution of the or-
dered and the chaotic orbits for this system, we had to
choose an appropriate PSS. The usual choice for the PSS is a
plane surface in phase space, but for the particular system
studied here, this would not be convenient because for any
choice of a plane PSS there would be important periodic
orbits that would not cross it.

The PSS we chose is a surface passing approximately
through the minima of the potential. Most nonescaping orbits
cross this PSS. Choosing appropriate coordinates on this
PSS, we were able to reduce the study of the dynamics of the
symmetric H2O molecule to the study of a two-dimensional
map. With this particular choice of the PSS we ensure that
the Poincare´ map describes the complete dynamics of the
molecule. A minor problem with this particular choice for
the PSS is that some periodic families appear to change pe-
riod without a bifurcation, due to an extra intersection of a
periodic orbit with the PSS.

We found the distribution of the orbits on this PSS by
distinguishing between ordered and chaotic orbits. The or-

dered orbits are represented by isolated points if they are
periodic and by invariant curves if they are quasiperiodic.
Most orbits are ordered for small energies. But as the energy
increases beyond a critical value the proportion of ordered
orbits decreases abruptly. When the energy increases beyond
the escape energy (E2522.7892), most orbits escape to in-
finity, but there are still orbits trapped around stable periodic
orbits. This remains true even when the energy increases
aboveE350, but for positive energies the regions of ordered
motion are very small, and practically insignificant.

We studied the main periodic orbits of periods 1 and 2
for negative values of the energy. We constructed stability
diagrams and bifurcation diagrams for the various families of
periodic orbits. These diagrams are essential in understand-
ing the role of various stable orbits in trapping nonperiodic
orbits around them. In fact for different energies the trapping
takes place around different orbits and we can separate the
interval between the critical energy and the escape energy
into two regions. In the first region~lower energies! the or-
dered orbits are trapped mainly around families 2a and 2a8.
In the second region, close to the escape energy the ordered
orbits are trapped mainly around the irregular family 2b.
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