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Orbits in the H ,O molecule

K. Efstathiou and G. Contopoulos®
Center for Astronomy, Academy of Athens, Anagnostopoulou 14, 106 73 Athens, Greece

(Received 16 August 2000; accepted 5 January 2001; published 30 March 2001

We study the forms of the orbits in a symmetric configuration of a realistic model of i H
molecule with particular emphasis on the periodic orbits. We use an appropriate Peimdace of
section(PSS and study the distribution of the orbits on this PSS for various energies. We find both
ordered and chaotic orbits. The proportion of ordered orbits is almost 100% for small energies, but
decreases abruptly beyond a critical energy. When the energy exceeds the escape energy there are
still nonescaping orbits around stable periodic orbits. We study in detail the forms of the various
periodic orbits, and their connections, by providing appropriate stability and bifurcation diagrams.

© 2001 American Institute of Physic§DOI: 10.1063/1.1356068

Small molecules are quantum systems, but their classical basic form of the eigenfunctich.” Further details can be
study reveals very important features. The method of the found by using more periodic orbftsand the asymptotic
Poincaresurface of section plays a prominent role in such ~ structures around unstable periodic orBits.

a study. A difficulty that appears often in realistic sys- A partial study of periodic orbits in the 40 molecule
tems is that one cannot always choose a flat Poincare has been done by Lawton and Chift* Jaffeand Brumer?
surface of section that intersects all periodic orbits. In  and by Kellman'®> who emphasize the bifurcation of the lo-
this paper we use a curved Poincarsurface of section in ~ cal stretching modes from the normal stretching vibrational
order to study a realistic model of the H,O molecule. We  mode. These papers contain references to previous work on
find the phase plots for different values of the energy of orbits in the HO molecule.

the molecule. Then we find all the periodic orbits of pe- We describe the model of the,B® molecule in Sec. Il
riod 1 and 2 and compute their stability and bifurcation and use a convenient set of coordinates in defining the
diagrams. Hamiltonian. We calculate the equipotential surfaces for the

symmetric moleculg¢Sec. Il) and in Sec. IV we define an
appropriate PSS and discuss its properties.

I. INTRODUCTION Then we study in detail the phase plots on such a PSS
and find the main islands of stability and the chaotic zones

Two dimensional Hamiltonian systems are often studiedSec. \). We calculate the main periodic orbits and their

using the technique of the Poincarep, where one reduces bifurcations and stability in Sec. VI. Finally we summarize

the four dimensional, continuous time flow of the system toour conclusions in Sec. VII.

an associatetivo dimensionatiscrete map, by choosing an

appropriate surface of section. Usually a flat surface of sec-

tion is chosen and the orbits that cross this surface with 4- A MODEL FOR THE H,0 MOLECULE

particular direction are the consequents of the Poincap. For the study of the kD molecule we have chosen a

For many systems a flat Poincaserface of section  gjmple model that is well suited for classical calculatishs.
(PSS is not suitable since there are orbits of these systemsq potential energy has the form

that do not cross the surface of section. In these cases another
choice must be made. In this paper we study a symmetric  Viro= V& - f(R1,Ry,Ra) + VE(Ry) +VEA(R,)
model of the HO molecule where we have chosen a curved 2 3
PSS. This choice for the PSS permits us to study all the +VEI(R) + Viiio(R1, Rz Ra), @
periodic orbits of the system for all the values of energy. whereR;, R,, andR; are the O-H, O-H,, and H—H,

The study of periodic orbits and phase plots in realisticdistances, respectively. Distances are measured in A and en-
models of simple molecules, such as the model we are studyrgies in eV. The single-body term in E@.) is given by
ing in this paper, gives interesting information that can be [

1—tan|‘(

1
compared with the behavior of the corresponding quantunv{). f(R;,R,,R;)=1.958 ~

2

3p3—p1—p2
2 “I

system and with experimentg.In particular the relation be-
. - . . (2

tween classical periodic orbits and quantum mechanical

eigenfunctions was emphasized by several authors, startinghere «=1.9018, p;=R;—0.9572, p,=R,—0.9572, and

with the work of Gutzwiller? The most surprising result was ps=Rs;—1.5139. The two-body terms are given by the equa-

that in many cases one simple periodic orbit determines th#ons

VE(R)=—Dy(1+ayri+ar’+asr)exp—asr}, i=1,2
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FIG. 1. Coordinates for the 0 molecule.

where r;=R;—0.9696, a;=4.507, a,=
andD,=4.6211,

V@(Ry)=—Dy(1+asrz+asri+agrd)exp—asrs), (4

wherer;=R3;—0.7414,a,=3.961, a5=4.064, ag= 3.574,
andD,=4.7472. Finally the three-body term is given by

ViPo(R1.R2,Rs) =0.018 92P(py ,p5.p3)
3
><Hl (1—tanh(y;pi/2)), (5)

4.884, az=23.795,

wherey;=y,=2.6, y3=1.5, andP(p4,p2,p3) is the poly-
nomial

3
P(Pl,PzaP3):1+Zl Cipi

3 3
+2, 2 Cijpip;

i=1 j=i

Mo

—+

3 3
> Z CijkpipjpPk

i=1

3 3
Z Zk Cijki PipjPKP! - (6)

uMw
HMw

The coefficientC;, C,J, Ciik »
paper by Murrell and Cartéf‘

Instead of the original coordinaté®,, R,, andR; we
will use the scaled Jacobi coordinates SR, 8(fig. 1) that
are defined by the equations

1
SR= Z\/ZRﬁ— 2R5—R3,

Sr= CYRS ’ (7)

andC;;, are defined in the

R;—R?
2a SRRy’
where« is given by the relation

[mo+ 2mH] 4
w=| 0 H
4mg

cosé=

)

The inverse relations are

R—\/ Sr
1= V2«
R—\/ Sr
2= N\ 2«

2
+(a SR)?>— SR Srco9,

2
+(a SR?+ SR Srcod, 9
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R Sr
3T,
The potential function given by Eq€l)—(6) can be writ-

ten in scaled Jacobi coordinates using E§.
The kinetic energy of the $O0 molecule has the form

1 1
SR sr
wherePgg, Ps,, andP, are the conjugate momenta of SR,
Sr, and 6, respectively. The parameter is defined by the
relation

—| P2+ P+ P21, (10)

[ momi  my
= Nmot2my 242

The Hamiltonian can now be written as the sum of the
kinetic and potential energies

H(Pggr,Ps,Py,SR,Sr0) =T(Pgg,Ps,Py,SR,SH

(11)

+ Vhho(SR,Srp). (12)
Ill. EQUIPOTENTIAL SURFACES
If we consider initial conditions with
0=ml2
and
Py=0, (13

we can easily see that=0 and Pg 0, meaning that the
submanifold of the phase space determined by ELf.is
invariant under the Hamiltonian flow and hence we can per-
form a standard type reduction in order to get a two degrees
of freedom Hamiltonian system on this submanifold.

The reduced Hamiltoniaid is related to the original
Hamiltonian through the relation

H(Pggr,Pgr, SR,SI=H(Pgg,Ps,0,SR,Srr/2) =E (14

and its numerical value is the energyof the molecule. This
Hamiltonian describes the symmetric water molecule, where
the distances O—Hand O—H are equal.

The equipotential surfaces for the symmetric molecule
are shown in Fig. 2. The potential has two minima at SR
=+0.676065, S+1.31082, where it takes the valug,
=—10.047. Between the two minima there is a saddle point
at SR=0, Sr=1.6057, where the potential takes the value
E,=—8.993. ForE<E, orbits are confined inside the po-
tential well around a minimum of the potential. Far>E;
the two wells join and orbits can pass from one well to the
other.

For values of energy greater th&iy= —2.7892 orbits
can escape to infinity following the two horizontal channels
at the left and the right of Fig. 2. Escape through these chan-
nels corresponds to a configuration of the molecule where
the oxygen atom has become unbounded and the two hydro-
gen atoms form an Hmolecule. Although folre>E, most
orbits escape there are still bounded orbits as one can see in
Fig. 6(c) below.
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FIG. 2. Equipotential surfaces for the symmetrigHmolecule. The solid

L N . FIG. 4. Orbitsa andc belong in the islands ofd and 1c, respectively. The
line is the Poincaresurface of section.

orbit b lies between these two islands. The thick line represents the PSS.

IV. A POINCARE SURFACE OF SECTION S . .
same point with coordinates SR, Sr with the same momen-

A PSS should intersect almost all the orBitsSuch in-  tym p. and they both have the same enefgyThen we
tersections occur naturally if the potential has a plane ofglye Eq.(14) in order to determinePs,, and we get two
symmetry. However this does not happen in the present casge|ytions+ Ps,. From Fig. 3 we can see that both solutions
On the other hand many orbits have a tendency t0 pasge valid, but they correspond to different orbits. This in turn

through a local minimum of the potentigalthough this i means that on such a PSS different orbits would overlap and
not always the cageThus in order to find a suitable Poin- ihis is not permissible.

care surface of section we calculated numerically for each In order to solve this problem we have chosen as coor-

value of SR the corresponding value of Sr, where the potenginates on the PSS, SR and the compoerdf the momen-
tial function has a minimum. Then we fitted the numerically m vectorP = (Psg, Ps,) tangential to the curve in EGL5).

determined function St f,(SR) by the analytic form Thus the PSS is determined by the coordinate SR along the
Sr=f(SR)=aT(aSR) (15) curve of Fig. 2 and the compone®; of the momentum.
' Some typical orbits on the plane (SR,Sr) are shown in Fig. 4.
where A variable that is canonically conjugate B is
f(x)=0.740 350+ 0.482 392 exp— 3.342 0%? SR
(x) b ) Qi= V1+T(x)dx. (17)
+0.631 258 exp—0.112 67&%) (16) 0
anda is given by Eq.(8). In fact the symplectic form in the variabl€g;, P; is
This curve is given in Fig. 2. We determined that the O =(dQ,)/\(dP,) (18

difference between the numerically determined curve Sr . h hat this i he f

=fum(SR) and the fitted analytic form is very small. For our f"mdh't can bel shown that this is preserved. The form(Eg).

computations we used the fitted form, given by E4$) and in the variables SRP, is written

(16). Q=(1+f'(SR)YAdSR/\(dP)). (19
Contrary to the textbook approach we have not ChoseEl'hus the two-fornrdSRAdP; is not preserved in general. In

SR andPgy as the two coordinates on the PSS. If we had : ' o
made sucsrse a choice we would have the following problem.our study we use the variable SR insteadgfbecause it is

. . . . ot practical to comput&; numerically.
Consider the orbits of Fig. 3. Both orbits cross the PSS at th8 Although the coordinates SR aiRj are not canonically

conjugate, this does not cause any problems in the study of
the system. In fact the integration is performed in the canoni-
cal coordinates SR, SPgr, Pg; and the coordinates SR and

A P, are used only on the PSS. The result is that the phase plots
on the PSS are only slightly distorted relative to the phase
Sr 5 plots that we would get if we had chosen canonically conju-

gate coordinates on the PSS.

V. PHASE PLOTS ON THE POINCARE SURFACE OF
SECTION

SR In Figs. 5 and 6 we give the distribution of the orbits on
FIG. 3. The thick line gives the PSS. Orbisand B cross the line at the th€ Poincaresurface of section for various values of the en-
same point with the samgg but oppositePs, . ergy E.
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FIG. 5. Phase plots for small values of the ener(g): E=—9.9, (b)
E=-9.3,(c) E=—-9.1, and(d) E=—8.99.

The energy of Fig. &) is close to the minimum of the
potential. In this plot practically all the orbits are ordered,
defining closed invariant curves. Many invariant curves form
two sets around two stable periodic orbits. The upper one is
the orbit 1a and the lower one the orbitcl(see Sec. VL
However there are also invariant curves between these two
sets, that start on the left or upper side of the boundary, and
terminate on the right side of the boundary. In Fig. 4 we can
see why this is happening. In this figure we see three orbits 40 , ) ) ) ) , )
for this value of the energy in configuration space. The orbits 24 18 12 06 00 06 12 18 24
labeled asa andc belong to the islands of the periodic orbits
la and Ic, respectively. We see that the PSS crosses the (c)
outline of these orbits at two nonadjacent sides. When this is
happening we get closed invariant curves on the PSS. But fanG. 6. Phase plots for energiesa) E=—8.0, (b) E=—3.0, and
the orbit labeled, which lies between the two islands of Fig. (c) E=—-2.5.

5(a), the PSS crosses the outline of this orbit at two adjacent
sides (Fig. 4), and on the PSS we get an open invariant
curve. occupied by bifurcations of orbitand their corresponding

Figures %b), 5(c), and %d) refer to larger energies and islands are now chaotic. This case is just above the limiting
are given in a larger scale than Figap Orbit 1c is contin-  value of the energ¥;= —8.993 at which the two potential
ued as the double period orbic2n Fig. 50b), the second wells join into one. Thus there is one symmetric figure for
point being near the left limit of the figure. The islands SR<O that joins Fig. &) at the small throat near the point
around both pointsare now larger. In this case the chaotic (0,0). The point(0,0) represents orbit 4, which is unstable
orbits are also insignificant. and produces a large chaotic region around it.

In Fig. 5(c) the orbit Z is unstable(and is represented In Fig. 6(a) we give the phase plot for a larger value of
by two points at the centers of two dark regipasd it has the energy E=—8) when the two potential wells are well
produced four stable points by bifurcation that correspond t@onnected at SRO (see the equipotentials of Fig). Figure
a stable orbit 4 of period 4, surrounded by islands of sta- 6(a) is symmetric with respect to the axis SR. The appar-
bility above and below each point of orbit2In this case ent asymmetries in the islands of this figure are due to the
there are some small chaotic zones around each unstable aise of nonsymmetric initial conditions on both sides of the
bit. axis SR=0. In this case orbit & is unstable and has gener-

The chaotic zones have grown considerably in Fig).5 ated by bifurcation orbit @, surrounded by two islands of
In this case there are still four islands of stabilitg,4as in  stability on the right half of Fig. @). A symmetric orbit B’

Fig. 5(c), but very small. All the rest of the area previously and its bifurcations &' appear on the left side of the figure.




Chaos, Vol. 11, No. 2, 2001

1.0

08 r

06

04 1

02 r

10 -9 8 7 6 5 -4 -3
E

FIG. 7. Proportion of regular orbits, as a function of the endfgy

Orbits 1a, 1a’ have generated two chaotic domains that sur-
round the islands 2 (respectively, 2’). At the lower left
and upper right sides of this figure there are two elongated
islands that belong to the familyb2 The center of the figure
(0,0 represents again the unstable ortit Wvhich generates

a large chaotic domain.

Most of Fig. §a) is covered by one chaotic orbit for
which we have calculated -80* points. We see that the
points of the chaotic orbit are not distributed uniformly on
the PSS. This is a transient phenomenon and is due to sticki-
ness of the orbits near cantori surrounding islands &r
islands 2&'. These cantori form partial barriers. Orbits need
a long time in order to cross the cantori and for considerable
times the regions inside and outside the cantori seem sepa-
rated. This causes the apparent nonuniformity of the distri-
bution of points on the PSS. But after a larger number of
iterations the distribution of the points becomes uniform.

The phase plots for larger values Bfhave some simi-
larity to Fig. 6a) but there are also differences. For example,
in Fig. 6(b) we see that there are two symmetric islands, one
on each side of the axis SR. These islands belong to the
irregular family 2o, which is symmetric with respect to the
point (0,0) (see Sec. VJl and not to two different families
like families 1a and 1a’ of Fig. 6(a). The chaotic domain in
this case is again very large.

For E above the energlf = E, orbits can escape. In Fig.
6(c) we can see the islands around an orbit that belongs in
family 2b. The orbits that are outside these islands escape
and this is why the area between the islands is empty.

The percentage of the area of the PSS covered by orga-
nized orbits as a function of the energy is presented in Fig. 7.
We see that for values of energy closeBp= —10.047(the
minimum value of the potentiplalmost all orbits are orga-

Orbits in the H,O molecule
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FIG. 8. Stability diagrams:(a) families 1a, 1b, 1c, (b) families

nized. An abrupt change happens at values of energy arour@. 1c, 2c _((_:ontinuation of k), (c) family 1a and its period 2 bifurcations,
E=—9. For E>—9 most of the PSS is filled by chaotic 2nd(d) families 2, 2r, 2z

orbits. There are islands of stability for even larger values of

the energy, and we notice that for values of the energy closgI PERIODIC ORBITS

to E=—3 the percentage of the organized orbits increases,
although it remains below 0.@r 20%). This increase is due
to the increase in the size of the island around famity 2
The islands continue to increase in size even wkebe-
comes larger than the escape endegy —2.79, but for still
larger E they become smaller.

We have computed the most important families of peri-
odic orbits for the symmetric water molecule. The stability
diagram of the period-1 families as a function of the energy
of the molecule can be seen in FigaB Such a diagram
gives the Heon stability parameté? « of each family as a
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SR
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o ) ) ) ) FIG. 10. The transition &—2c. Orbita (E= —9.8) belongs to family &.
FIG. 9. Periodic orbits & and Ic for E=—10.046 64 in configuration it p (E=—9.2) belongs to family &.

space. Linga) represents the numerically determined minima of the poten-
tial and the linej(b) represents the selected PSS.

function of E. For a periodk orbit of an area-preserving map

o, the Hanon stability parameter is defined by the relation instead of the fitted function. Familyczbecomes unstable at

E=—9.164 and generates by bifurcation two stable period 4
a= $TracéD[¥](xo)), (20)  families.
For values of the energy betweén-E,=—10.047 and
E= —7.2 the largest islands on the PSS are around fanaily 1
and family 2a, which bifurcate from & [Figs. 5 and €)].
Family la is created at the minimum energy of the system
E=E;=—10.047 as a stable family and becomes unstable at
>52—8.95 [Fig. 8@]. At this value of E it generates by
ifurcation the period-2 family 2 [Fig. 8(c)]. Notice that
when the stability parameter of a period-1 orbit is equal to
—1 the same orbit described twice has a stability parameter
+1. Family 2a starts atE= —8.95 with stability parameter
a=1, and exists for larger values & Family 1a remains
unstable untilE=—2.47, where the period-2 family 2e is

. 1+1'(SRy) generated by bifurcation from familyal existing for smaller
deD[o"](Xo) = m (21)  values ofE [Fig. 8c)].

Family 2a for E=—6.82 becomes unstable by crossing
wherex, = a%(xo) = (SR, Py) is thekth image ofx,. If an  the linea=—1 and becomes stable again = —5.62. The
orbit is periodic with periodk, then SR=SR,, hence stability parameter of family & takes the valuen=1 at
deD[ o*](x0) = 1. E=—5.568. At this energy an unstable period-2 family,

For values of energy close to the minimum value ofwhich we call X, is created. Family @ becomes unstable
the potential E=E;=—10.047) there exist two period-1 (going from larger to smaller values of the enerdgr E

wherex is a point of the periodic orbit anBl[ *](x,) is the

Jacobian matrix ofro- - o0 (k timeg evaluated ak,. When
the stability parameter of a periodic orbit lies in the interval

from —1 to 1 the orbit is stable, otherwise it is unstable.

Since the Poincarenap is not symplectic, as we have
explained in Sec. IV, the determinant of the Jacobian matri
Do(x) is not equal to 1 for arbitrary points on the PSS.
However for a periodic orbit with periokithe determinant of
D[ o] is exactly equal to 1. In fact, using E€L9) it can be
proven that the determinant of the Jacobian matrix'oht a
point Xo=(SRy,Pyo) is given by the relation

families. We call these familiesaland Ic. They correspond = —2.987 and becomes stable again 6+ —5.661. The
to the two normal modes of the water molecule. In Fig. 9stability parameter of family @ takes the valuex=1 atE

we can see the corresponding periodic orbits Bt = —5.675. At this energy the unstable family,2vhich was
=—10.046 64 in configuration space. created at a larger energy frona2joins 2e [Fig. 8(c)]. The

Family 1c has a peculiar behavior that is the result of bifurcation diagram of families 4, 2a, 2e, 2f, 1b is
our choice of the PSS. This family is born &&= —10.047,  shown in Fig. 11. This figure gives the value of SR for each
but beyond the energlf=—9.331 it appears as a period-2 energy. We see that familyf2exists only in a small interval
family, which we call Z [Fig. 8b)]. We note that no bifur- of values ofE and joins family & at its maximumE and
cation appears here. In order to understand what is happefamily 2e at its minimumE. This explains why families
ing, we should see Fig. 10. In this figure we see one orbit oRa, 2e, and Z form a loop in Fig. &c).
family 1c that intersects the PSS only at one point, as ex- BetweenE=—2.47 andE= —2.00 family la remains
pected for small energies. An orbit of the same family for astable. AtE=—2.00 family la joins family 1b, and for
larger value of the energy intersects the PSS at two pointrger values of energy familyal does not exist. We may
and thus it appears as a period-2 orbit. We will call thethus say that family & is a bifurcation of family b. Family
change of the apparent period of a family that is not related b is represented by the poif@,0) on the surface of section.
to a bifurcation, aransition We note here that there would It is created at the energlf,=—8.993[Fig. 8a)], at the
be a transition even if we had chosen, as the PSS, the nsaddle point of the potentia(Fig. 2), with coordinates
merically determined curve of the minima of the potential SR=0, Sr=1.6057. For energies somewhat larger than
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FIG. 11. Bifurcation diagram of family 4. FIG. 13. Orbits of family 2 in configuration space. The dotted line repre-

sents the PSS.

family 1b is unstablg @=9.73. As E increases, the stability
parameter of family b becomes larger, but latéfor larger
E) it becomes smaller. AE=—2.00 this family becomes
stable. It becomes unstable agairEat — 1.50 with stability
parameter=—1. For largerkE family 1b is unstable, but at
E=—0.0205 it becomes stable again unfi=—0.0110,
where it becomes unstable by crossing the lrrel and thus
generating another period-1 family. As the energy ap
proaches the enerdyg=0 the stability parameter of family
1b tends to infinity, and the return timi@eriod of the peri-
odic orbit also tends to infinity.

means that irregular orbits are not created by the bifurcation
of an existing periodic orbit, but from each other. The stable
family is called 2 and the unstable one is called.2The
stability parameter of family 2 grows from a=1 to
a=17.12 as the energy increases and then decreases, until it
reaches the value=2.77 atE=—6.454. For this energy
family 2r appears as a period-4 family and we have a tran-
‘sition, as in the case of the transition-2 2c.

The stable family B plays an important role in the
structure of the phase space. The stability diagram of family
2b and the period-2 families that bifurcate fronb Zan be

In Fig. 12 we can see that p_eriodi_c orbits of f"’?m"t” L seen in Fig. &). The diagram is very complex, much more
appear as straight lines in configuration space with=8R than the stability diagram of familyd Here we consider

and vary_ing Sr_. In physical space thi§ corresponds to a COl.in()nIy family 2b and its equal period bifurcations. The stabil-
ear cqnflguratlon of the molecule with the oxygen atom 'nity parameter of family B crossesor just reachesthe hori-

the T“'dd'e and the. two_hydrogen atoms oscillating SYM=ontal linea=1 eight times. Each time this happens a family
metrically at each side of the oxygen atom. For large mter-mc period-2 orbits bifurcates from familyl® For E=0.27

- . . 2family 2b joins a new unstable family 2and they both
we can also see how the periodic orbits of family dppear disappear there, i.e., they do not exist for larger

in configuration space for differ_ent values_ of the energy. We Families 2, 2r, and 2 are symmetric with respect to
note_ that thgre is also a fam|lya_1 that is symmetric to the point(0,0). The families that bifurcate fromt2 are not
fam|ly 1a W'th. respect to ,the axis SRO. AS the energy symmetric but they come in symmetric pairs. In Figd)3
increases familiesd and 1a’ approach family b, and join some families that have bifurcated from family 2uddenly

1b for E=—2.00. . . . terminate because they are going through transitions. Some

At engrgyEz —8.06 wo wreg_qlar period-2 fam|!|es are  orpits of family 2o can be seen in Fig. 13. In physical space
created[Fig. 8(d)]. Irregular families are greateq N PAIS hese orbits correspond to oscillations of the oxygen atom
(one stable and one unstabley a tangent bifurcation. This between the two symmetric minima of the potential.

The island around the orbits of familyb2is the largest
island for values of energy close b= — 3. Generally, from
E=—8 to E=—3 the island around 2 occupies a signifi-
cant measure of the PSS.

In the present paper we studied the stabi(ayd insta-
bility) of the various types of orbits on the plane of symme-
try ==/2 andP,=0. However orbits that are stable on this
plane may be unstable in a direction perpendicular to this
plane. An example is shown in Fig. 14, where we have cal-
culated two stability parameters for familya2 One is the
usual stability parametet, as in Fig. &), and the other is
. the stability parametet, for deviations out of the symmetry

15§ 10 05 00 05 10 15 plane. We see that while familya2is stable with respect to
SR deviation on the symmetry plane it becomes unstable with

FIG. 12. Periodic orbits of familiest(axis SR=0) and 1a. The dotted line r?.SpeCt tf) perpgndicular .deViaFionS E’F —8. At the tl‘a:n-
represents the PSS. sition to instability there is a bifurcation of a new period 2

Sr
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4 " ¥ - dered orbits are represented by isolated points if they are
periodic and by invariant curves if they are quasiperiodic.
Most orbits are ordered for small energies. But as the energy
2t ; increases beyond a critical value the proportion of ordered
orbits decreases abruptly. When the energy increases beyond
the escape energ¥g=—2.7892), most orbits escape to in-

ol ] finity, but there are still orbits trapped around stable periodic

o orbits. This remains true even when the energy increases
-1 aboveE;=0, but for positive energies the regions of ordered
motion are very small, and practically insignificant.

9.0 -85 -8.0 75 7.0 We studied the main periodic orbits of periods 1 and 2

E for negative values of the energy. We constructed stability

FIG. 14. Stability diagrams of the famiBa for deviations on the symmetry ~ diagrams and bifurcation diagrams for the various families of
plane(a) and perpendicular to itc(,). periodic orbits. These diagrams are essential in understand-

ing the role of various stable orbits in trapping nonperiodic
. ) ~_orbits around them. In fact for different energies the trapping
family, which extends out of the symmetry plane and is ini-taxes place around different orbits and we can separate the
tially stable. interval between the critical energy and the escape energy
The study of the stability of orbits in a direction out of g two regions. In the first regioflower energiesthe or-
Fhe symmetry plaqe is important in many cases. Such studiggsred orbits are trapped mainly around familiesghd 2.
in galactic dynamics have been made for a long tfhe. | the second region, close to the escape energy the ordered

detailed study of the stability and the bifurcations of periodicqpits are trapped mainly around the irregular family. 2
orbits with respect to the third dimension in the® mol-

ecule will be given in a future paper. ACKNOWLEDGMENTS
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