We study the forms of the orbits in a symmetric configuration of a realistic
model of the H2O molecule with particular emphasis on the periodic orbits. We
use an appropriate Poincar\'e surface of section (PSS) and study the
distribution of the orbits on this PSS for various energies. We find both
ordered and chaotic orbits. The proportion of ordered orbits is almost 100% for
small energies, but decreases abruptly beyond a critical energy. When the
energy exceeds the escape energy there are still non-escaping orbits around
stable periodic orbits. We study in detail the forms of the various periodic
orbits, and their connections, by providing appropriate stability and
bifurcation diagrams.Comment: 21 pages, 14 figures, accepted for publication in CHAO