222 research outputs found

    Engineering gels with time-evolving viscoelasticity

    Get PDF
    From a mechanical point of view, a native extracellular matrix (ECM) is viscoelastic. It also possesses time-evolving or dynamic behaviour, since pathophysiological processes such as ageing alter their mechanical properties over time. On the other hand, biomaterial research on mechanobiology has focused mainly on the development of substrates with varying stiffness, with a few recent contributions on time- or space-dependent substrate mechanics. This work reports on a new method for engineering dynamic viscoelastic substrates, i.e., substrates in which viscoelastic parameters can change or evolve with time, providing a tool for investigating cell response to the mechanical microenvironment. In particular, a two-step (chemical and enzymatic) crosslinking strategy was implemented to modulate the viscoelastic properties of gelatin hydrogels. First, gels with different glutaraldehyde concentrations were developed to mimic a wide range of soft tissue viscoelastic behaviours. Then their mechanical behaviour was modulated over time using microbial transglutaminase. Typically, enzymatically induced mechanical alterations occurred within the first 24 h of reaction and then the characteristic time constant decreased although the elastic properties were maintained almost constant for up to seven days. Preliminary cell culture tests showed that cells adhered to the gels, and their viability was similar to that of controls. Thus, the strategy proposed in this work is suitable for studying cell response and adaptation to temporal variations of substrate mechanics during culture

    Efficiency Optimization in Medium Power Wind Turbines: an Innovative Mechanical Pitch Control System

    Get PDF
    The paper illustrates the design of a new mechanical system for propeller blades pitch calibration in medium power wind turbines. The peculiarity of this system is its capacity of adjusting through a feedback control system, which allows the wind turbine to capture the maximum amount of energy from the wind. In this work an axial drive system was studied by means of racks capable of linearly adjusting the pitch of all wind turbine propeller blades in an intrinsically synchronous way, with an advantage over the traditional methods of propeller blades pitch calibration. For different wind speeds the system adjusts the blades angle of incidence in order to reduce the rotation speed and keep the system as close as possible to the pre-established design conditions generating maximum energy with a high efficiency. The manuscript examines the main analyses and simulations conducted during the design phase. These show that the proposed method allows to reach higher efficiencies with a greater intrinsic stability compared to the traditional pitch control mechanisms in medium power wind turbines. The experimental results on the first prototypes confirm the efficiency increase

    The "Automated Welding Machine" in the integration process of the Detection Units of the KM3Net experiment: general description

    Get PDF
    This note describes one of the tools used during Process-1 of the integration of the Detection Units (DUs) in the KM3NeT experiment. In particular, the device is designed to seal the Break-out-box (BOB). The BOB is a box interface between a Digital Optical Module (DOM) and the electrooptical cable (VEOC) for power and optical connection of each optical module (DOM) to the DU. The original manual version of the tool developed by NIKHEF was automatized by INFN-LNS in order to guarantee a reproducible operation in the recursive process of the DU integration and two samples have been realized for the integration sites at LNS and Genova respectively

    Developing a highly stable Carlina acaulis essential oil nanoemulsion for managing Lobesia botrana

    Get PDF
    The growing interest in the development of green pest management strategies is leading to the exploitation of essential oils (EOs) as promising botanical pesticides. In this respect, nanotechnology could efficiently support the use of EOs through their encapsulation into stable nanoformulations, such as nanoemulsions (NEs), to improve their stability and efficacy. This technology assures the improvement of the chemical stability, hydrophilicity, and environmental persistence of EOs, giving an added value for the fabrication of natural insecticides effective against a wide spectrum of insect vectors and pests of public and agronomical importance. Carlina acaulis (Asteraceae) root EO has been recently proposed as a promising ingredient of a new generation of botanical insecticides. In the present study, a highly stable C. acaulis-based NE was developed. Interestingly, such a nanosystem was able to encapsulate 6% (w/w) of C. acaulis EO, showing a mean diameter of around 140 nm and a SOR (surfactant-to-oil ratio) of 0.6. Its stability was evaluated in a storage period of six months and corroborated by an accelerated stability study. Therefore, the C. acaulis EO and C. acaulis-based NE were evaluated for their toxicity against 1st instar larvae of the European grapevine moth (EGVM), Lobesia botrana (Denis & Schiffermüller, 1775) (Lepidoptera: Tortricidae), a major vineyard pest. The chemical composition of C. acaulis EO was investigated by gas chromatography–mass spectrometry (GC–MS) revealing carlina oxide, a polyacetylene, as the main constituent. In toxicity assays, both the C. acaulis EO and the C. acaulis-based NE were highly toxic to L. botrana larvae, with LC50 values of 7.299 and 9.044 µL/mL for C. acaulis EO and NE, respectively. The C. acaulis-based NE represents a promising option to develop highly stable botanical insecticides for pest management. To date, this study represents the first evidence about the insecticidal toxicity of EOs and EO-based NEs against this major grapevine pest

    Dasabuvir and Ombitasvir/Paritaprevir/Ritonavir with or without Ribavirin in Patients with HIV-HCV Coinfection. Real Life Interim Analysis of an Italian Multicentre Compassionate Use Program

    Get PDF
    Background and Aims: An HCV cure is now possible in a large proportion of HIV-HCV patient. We present real life results of a compassionate use program promoted by SIMIT (Infectious and Tropical Diseases Italian Society) of Dasabuvir and Ombitasvir/Paritaprevir/Ritonavir ± Ribavirin for 12 weeks in 213 HIV-HCV genotype 1 patients. Data on efficacy and tolerability of this strategy in HIV patients have been reported until now only in 43 non cirrhotic HIV subjects

    Developing a highly stable carlina acaulis essential oil nanoemulsion for managing Lobesia Botrana

    Get PDF
    The growing interest in the development of green pest management strategies is leading to the exploitation of essential oils (EOs) as promising botanical pesticides. In this respect, nanotechnology could efficiently support the use of EOs through their encapsulation into stable nanoformulations, such as nanoemulsions (NEs), to improve their stability and efficacy. This technology assures the improvement of the chemical stability, hydrophilicity, and environmental persistence of EOs, giving an added value for the fabrication of natural insecticides effective against a wide spectrum of insect vectors and pests of public and agronomical importance. Carlina acaulis (Asteraceae) root EO has been recently proposed as a promising ingredient of a new generation of botanical insecticides. In the present study, a highly stable C. acaulis-based NE was developed. Interestingly, such a nanosystem was able to encapsulate 6% (w/w) of C. acaulis EO, showing a mean diameter of around 140 nm and a SOR (surfactant-to-oil ratio) of 0.6. Its stability was evaluated in a storage period of six months and corroborated by an accelerated stability study. Therefore, the C. acaulis EO and C. acaulis-based NE were evaluated for their toxicity against 1st instar larvae of the European grapevine moth (EGVM), Lobesia botrana (Denis & Schiffermüller, 1775) (Lepidoptera: Tortricidae), a major vineyard pest. The chemical composition of C. acaulis EO was investigated by gas chromatography–mass spectrometry (GC–MS) revealing carlina oxide, a polyacetylene, as the main constituent. In toxicity assays, both the C. acaulis EO and the C. acaulis-based NE were highly toxic to L. botrana larvae, with LC50 values of 7.299 and 9.044 µL/mL for C. acaulis EO and NE, respectively. The C. acaulis-based NE represents a promising option to develop highly stable botanical insecticides for pest management. To date, this study represents the first evidence about the insecticidal toxicity of EOs and EO-based NEs against this major grapevine pest

    NEMO: A Project for a km3^3 Underwater Detector for Astrophysical Neutrinos in the Mediterranean Sea

    Full text link
    The status of the project is described: the activity on long term characterization of water optical and oceanographic parameters at the Capo Passero site candidate for the Mediterranean km3^3 neutrino telescope; the feasibility study; the physics performances and underwater technology for the km3^3; the activity on NEMO Phase 1, a technological demonstrator that has been deployed at 2000 m depth 25 km offshore Catania; the realization of an underwater infrastructure at 3500 m depth at the candidate site (NEMO Phase 2).Comment: Proceeding of ISCRA 2006, Erice 20-27 June 200

    Measurement of the atmospheric muon flux with the NEMO Phase-1 detector

    Get PDF
    The NEMO Collaboration installed and operated an underwater detector including prototypes of the critical elements of a possible underwater km3 neutrino telescope: a four-floor tower (called Mini-Tower) and a Junction Box. The detector was developed to test some of the main systems of the km3 detector, including the data transmission, the power distribution, the timing calibration and the acoustic positioning systems as well as to verify the capabilities of a single tridimensional detection structure to reconstruct muon tracks. We present results of the analysis of the data collected with the NEMO Mini-Tower. The position of photomultiplier tubes (PMTs) is determined through the acoustic position system. Signals detected with PMTs are used to reconstruct the tracks of atmospheric muons. The angular distribution of atmospheric muons was measured and results compared with Monte Carlo simulations.Comment: Astrop. Phys., accepte

    Measurement of the atmospheric muon depth intensity relation with the NEMO Phase-2 tower

    Get PDF
    The results of the analysis of the data collected with the NEMO Phase-2 tower, deployed at 3500 m depth about 80 km off-shore Capo Passero (Italy), are presented. Cherenkov photons detected with the photomultipliers tubes were used to reconstruct the tracks of atmospheric muons. Their zenith-angle distribution was measured and the results compared with Monte Carlo simulations. An evaluation of the systematic effects due to uncertainties on environmental and detector parameters is also included. The associated depth intensity relation was evaluated and compared with previous measurements and theoretical predictions. With the present analysis, the muon depth intensity relation has been measured up to 13 km of water equivalent.Comment: submitted to Astroparticle Physic
    corecore