218 research outputs found
The speed of learning instructed stimulus-response association rules in human: experimental data and model.
Humans can learn associations between visual stimuli and motor responses from just a single instruction. This is known to be a fast process, but how fast is it? To answer this question, we asked participants to learn a briefly presented (200ms) stimulus-response rule, which they then had to rapidly apply after a variable delay of between 50 and 1300ms. Participants showed a longer response time with increased variability for short delays. The error rate was low and did not vary with the delay, showing that participants were able to encode the rule correctly in less than 250ms. This time is close to the fastest synaptic learning speed deemed possible by diffusive influx of AMPA receptors. Learning continued at a slower pace in the delay period and was fully completed in average 900ms after rule presentation onset, when response latencies dropped to levels consistent with basic reaction times. A neural model was proposed that explains the reduction of response times and of their variability with the delay by (i) a random synaptic learning process that generates weights of average values increasing with the learning time, followed by (ii) random crossing of the firing threshold by a leaky integrate-and-fire neuron model, and (iii) assuming that the behavioural response is initiated when all neurons in a pool of m neurons have fired their first spike after input onset. Values of m=2 or 3 were consistent with the experimental data. The proposed model is the simplest solution consistent with neurophysiological knowledge. Additional experiments are suggested to test the hypothesis underlying the model and also to explore forgetting effects for which there were indications for the longer delay conditions. This article is part of a Special Issue entitled Neural Coding 2012
On quaternion based parametrization of orientation in computer vision and robotics
The problem of orientation parameterization for applications in computer vision and robotics is examined in detail herein.
The necessary intuition and formulas are provided for direct practical use in any existing algorithm that seeks to
minimize a cost function in an iterative fashion. Two distinct schemes of parameterization are analyzed: The first scheme
concerns the traditional axis-angle approach, while the second employs stereographic projection from unit quaternion
sphere to the 3D real projective space. Performance measurements are taken and a comparison is made between the two
approaches. Results suggests that there exist several benefits in the use of stereographic projection that include rational
expressions in the rotation matrix derivatives, improved accuracy, robustness to random starting points and accelerated
convergence
Improving the Performance Against Force Variation of EMG Controlled Multifunctional Upper-Limb Prostheses for Transradial Amputees
We investigate the problem of achieving robust control of hand prostheses by the electromyogram (EMG) of transradial amputees in the presence of variable force levels, as these variations can have a substantial impact on the robustness of the control of the prostheses. We also propose a novel set of features that aim at reducing the impact of force level variations on the prosthesis controlled by amputees. These features characterize the EMG activity by means of the orientation between a set of spectral moments descriptors extracted from the EMG signal and a nonlinearly mapped version of it. At the same time, our feature extraction method processes the EMG signals directly from the time-domain to reduce computational cost. The performance of the proposed features is tested on EMG data collected from nine transradial amputees performing six classes of movements each with three force levels. Our results indicate that the proposed features can achieve significant reductions in classification error rates in comparison to other well-known feature extraction methods, achieving improvements of ≈ 6% to 8% in the average classification performance across all subjects and force levels, when training with all forces
On learning time delays between the spikes from different input neurons in a biophysical model of a pyramidal neuron.
Biological systems are able to recognise temporal sequences of stimuli or compute in the temporal domain. In this paper we are exploring whether a biophysical model of a pyramidal neuron can detect and learn systematic time delays between the spikes from different input neurons. In particular, we investigate whether it is possible to reinforce pairs of synapses separated by a dendritic propagation time delay corresponding to the arrival time difference of two spikes from two different input neurons. We examine two subthreshold learning approaches where the first relies on the backpropagation of EPSPs (excitatory postsynaptic potentials) and the second on the backpropagation of a somatic action potential, whose production is supported by a learning-enabling background current. The first approach does not provide a learning signal that sufficiently differentiates between synapses at different locations, while in the second approach, somatic spikes do not provide a reliable signal distinguishing arrival time differences of the order of the dendritic propagation time. It appears that the firing of pyramidal neurons shows little sensitivity to heterosynaptic spike arrival time differences of several milliseconds. This neuron is therefore unlikely to be able to learn to detect such differences
Markov analysis of stochastic resonance in a periodically driven integrate-fire neuron
We model the dynamics of the leaky integrate-fire neuron under periodic
stimulation as a Markov process with respect to the stimulus phase. This avoids
the unrealistic assumption of a stimulus reset after each spike made in earlier
work and thus solves the long-standing reset problem. The neuron exhibits
stochastic resonance, both with respect to input noise intensity and stimulus
frequency. The latter resonance arises by matching the stimulus frequency to
the refractory time of the neuron. The Markov approach can be generalized to
other periodically driven stochastic processes containing a reset mechanism.Comment: 23 pages, 10 figure
Recovery of a Humanoid Robot from a Destabilising Impact.
This paper examines the case of a bipedal robot under an external impact along the axis of the two supporting feet. The dynamics of the robot is modelled using the 3-Mass Linear Inverted Pendulum Model. The model shows that, for impacts below a given threshold, the robot recovers naturally and no corrective action is required. For larger, destabilising impacts, this paper described how to calculate a single or a sequence of corrective steps. The key information used for the calculations is the initial velocity generated by the impact. The behaviour of the model for various initial configurations and impact parameters is illustrated by simulations
Probing the early phase of rapid instructed rule encoding
Item does not contain fulltextHumans can rapidly convert instructions about a rule into functional neural structures used to apply the rule. The early stages of this encoding process are poorly understood. We designed a stimulus–response (SR) task in which participants were first shown a SR rule on a screen for 200 ms, and then had to apply it to a test stimulus T, which either matched the S in the rule (SR trial) or not (catch trial). To investigate the early stages of rule encoding, the delay between the end of rule display and the onset of the test stimulus was manipulated and chosen between values of 50 ms to 1300 ms. Participants conducted three sessions of 288 trials each, separated by a median of 9 h. Random sequences of 20 rules were used. We then analysed the reaction times and the types of errors made by participants in the different conditions. The analysis of practice effects in session 1 suggests that the neural networks that process SR and catch trials are at least partially distinct, and improve separately during the practice of respectively SR and catch trials. The rule-encoding process, however, is common to both tasks and improves with the number of trials, irrespective of the trial type. Rule encoding shows interesting dynamic properties that last for 500 ms after the end of the stimulus presentation. The encoding process increases the response time in a non-stochastic way, simply adding a reaction time cost to all responses. The rule-retrieval system is functional before the encoding has stabilized, as early as 50 ms after the end of SR rule presentation, with low response errors. It is sensitive to masking however, producing errors with brief (100 ms) test stimulus presentations. Once encoding has stabilized, the sensitivity to masking disappears. It is suggested that participants do encode rules as a parametrized function, using the same neural encoding structure for each trial, rather than reconfiguring their brain anew for each new SR rule. This structure would have been implemented from instructions received prior to the experiment, by using a library of neural functions available in the brain. The observed errors are consistent with this view.13 p
Predicting Maximum Tree Heights and Other Traits from Allometric Scaling and Resource Limitations
Terrestrial vegetation plays a central role in regulating the carbon and water cycles, and adjusting planetary albedo. As such, a clear understanding and accurate characterization of vegetation dynamics is critical to understanding and modeling the broader climate system. Maximum tree height is an important feature of forest vegetation because it is directly related to the overall scale of many ecological and environmental quantities and is an important indicator for understanding several properties of plant communities, including total standing biomass and resource use. We present a model that predicts local maximal tree height across the entire continental United States, in good agreement with data. The model combines scaling laws, which encode the average, base-line behavior of many tree characteristics, with energy budgets constrained by local resource limitations, such as precipitation, temperature and solar radiation. In addition to predicting maximum tree height in an environment, our framework can be extended to predict how other tree traits, such as stomatal density, depend on these resource constraints. Furthermore, it offers predictions for the relationship between height and whole canopy albedo, which is important for understanding the Earth's radiative budget, a critical component of the climate system. Because our model focuses on dominant features, which are represented by a small set of mechanisms, it can be easily integrated into more complicated ecological or climate models.National Science Foundation (U.S.) (Research Experience for Undergraduates stipend)Gordon and Betty Moore FoundationNational Science Foundation (U.S.) (Graduate Research Fellowship Program)Massachusetts Institute of Technology. Presidential FellowshipEugene V. and Clare Thaw Charitable TrustEngineering and Physical Sciences Research CouncilNational Science Foundation (U.S.) (PHY0202180)Colorado College (Venture Grant Program
- …
