

Journal of Engineering Science and Technology Review 7 (1) (2014) 82 – 93

On quaternion based parameterization of orientation in computer vision and robotics

G. Terzakis1, P. Culverhouse1, G. Bugmann1, S. Sharma2 and R. Sutton2

1 Centre for Robotics and Neural Systems, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK

2School of Marine Science and Engineerinyg, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK

Received 12 December 2013; Accepted 10 April 2014

Abstract

The problem of orientation parameterization for applications in computer vision and robotics is examined in detail herein.
The necessary intuition and formulas are provided for direct practical use in any existing algorithm that seeks to
minimize a cost function in an iterative fashion. Two distinct schemes of parameterization are analyzed: The first scheme
concerns the traditional axis-angle approach, while the second employs stereographic projection from unit quaternion
sphere to the 3D real projective space. Performance measurements are taken and a comparison is made between the two
approaches. Results suggests that there exist several benefits in the use of stereographic projection that include rational
expressions in the rotation matrix derivatives, improved accuracy, robustness to random starting points and accelerated
convergence.

 Keywords: Orientation, rotation matrix, quaternions, axis-angle parameters, stereographic projection.
 __

1. Introduction

Many tasks in the fields of computer vision, robotics,
computer graphics and animation require the estimation of
rotation matrices in the context of the implementation of
algorithms involving optimization of cost functions with
non-linear derivatives. A very typical example of such an
optimization in computer graphics based animation is the
interpolation or key-framing of a sequence of poses[1]. In
robotics and computer vision, parameterization of rotation
matrices is typically met in applications concerning structure
from motion[2], camera calibration[3] or generally,
stochastic processes which require linearization of non-
linear relationships in order to propagate variance through
time and optimize the estimates of hidden states with respect
to measurements[4, 5].
 A 3D rotation matrix has 9 elements, but only 3 degrees
of freedom (DOF); hence the need to employ minimal
parameterization during optimization naturally arises.
Typical parameterization schemes are Euler angles and the
axis-angle parameters[6]. Using Euler angles to parameterize
a rotation matrix is generally convenient, mainly in terms of
the computations required to obtain the Jacobian, but this
scheme generally suffers from inherent ambiguities, since
the rotation can be represented in more ways than one. A
special class of singularities occurring with the use of Euler
angle is well known as gimbal locks[7], which can be
algebraically interpreted as the loss of one degree of freedom
in the rotation matrix. In practice, they can be loosely
thought of as a loss of orientation. The ambiguities that
come with the Euler angle representation, although not very
frequent, are nevertheless distinctively possible; hence, they

motivate the search for more robust alternative
representations. The unit quaternion representation is
arguably one of them.
 The following sections focus on the representation of
rotation matrices with quaternions and two different
approaches of parameterization are introduced: The first
approach (section 5) concerns the traditional axis-angle
scheme [8]. The second (section 6) takes advantage of the
homeomorphic relation between the 4D unit sphere and the
3D projective space into providing a rational expression for
the derivatives of the rotation matrix, as opposed to the axis-
angle method, which imposes the presence of irrational
functions in the corresponding expressions. The idea of
thinking of unit quaternions as back-projections of 3D points
on a hyperplane is not new [9, 10], yet it has generally
received little attention in literature related to iterative
optimization in robotics and computer vision. In addition to
formulas and derivations, performance comparison between
the two methods in the context of steepest descent[11] and
Levenberg – Marquardt (LM) [12, 13] executions for
randomly generated rotation matrices are presented.

2. Quaternions: A quick walkthrough

The number system of quaternions is an extension of
complex numbers and was first introduced by Rowan
Hamilton in 1843. The algebra of quaternions is equipped
with addition and multiplication which is generally non-
commutative. The set of quaternions is equal to ℝ! and
usually is denoted with H. In fact, quaternions can be
represented as 4-dimensional vectors. The set of quaternions
includes the imaginary elements i, j and k, which, together
with the real number 1, form the set of basis elements, such
as:

Jestr

JOURNAL OF
Engineering Science and
Technology Review

 www.jestr.org

E-mail address: georgios.terzakis@plymouth.ac.uk
ISSN: 1791-2377 © 2014 Kavala Institute of Technology. All rights reserved.

G. Terzakis, P. Culverhouse, G. Bugmann, S. Sharma and R. Sutton/Journal of Engineering Science and Technology Review 7 (1) (2014) 82 – 93

83

𝑖! = 𝑗! = 𝑘! = 𝑖𝑗𝑘 = −1

 From the above, it can be easily seen that multiplication
of the basis elements is not generally commutative.
Specifically,

𝑖𝑗 = 𝑘 𝑎𝑛𝑑 𝑗𝑖 = −𝑘 , 𝑗𝑘 = 𝑖
𝑎𝑛𝑑 𝑘𝑗 = −𝑖 , 𝑘𝑖 = 𝑗 𝑎𝑛𝑑 𝑖𝑘 = −𝑗

 Using the basis elements and for any𝑞!, 𝑞!, 𝑞!, 𝑞! ∈ ℝ,
one may obtain the general form of a quaternion q as:

𝒒 = 𝑞! + 𝑖𝑞! + 𝑗𝑞! + 𝑘𝑞!

 It follows that q can also be denoted as a 4D vector, or a
4-tuple:

𝒒 =

𝑞!
𝑞!
𝑞!
𝑞!

= 𝑞!
𝒗 𝑜𝑟,

𝒒 = 𝑞!, 𝑞!, 𝑞!, 𝑞! = 𝑞!,𝒗
where 𝒗 = 𝑞! 𝑞! 𝑞! ! is the vector containing the
imaginary parts and q0 the scalar part of the quaternion.

2.1 Addition and multiplication
Quaternion addition and multiplication is a straightforward
generalization of the multiplication of complex numbers
using all four basis elements (1, i, j, k). Hence, for any two
quaternions 𝒒 = 𝑞! 𝒗 and 𝒓 = 𝑟! 𝒖 , the
corresponding sum and product are given as follows:

𝒒 + 𝒓 = 𝑞! + 𝑟!,𝒗 + 𝒖 (1)

𝒒𝒓 = (𝑞!𝑟! − 𝒗 ∙ 𝒖,𝒗×𝒖 + 𝑞!𝒖 + 𝑟!𝒗) (2)

 The quaternion product qr can also be conveniently
written in matrix form:

𝒒𝒓 =

𝑞! −𝑞! −𝑞! −𝑞!
𝑞! 𝑞! −𝑞! 𝑞!
𝑞! 𝑞! 𝑞! −𝑞!
𝑞! −𝑞! 𝑞! 𝑞!

𝒓 = 𝑸𝑟 (3)

 The permuted rq product can also be written in matrix
form using an expansion of q:

𝒓𝒒 =

𝑞! −𝑞! −𝑞! −𝑞!
𝑞! 𝑞! 𝑞! −𝑞!
𝑞! −𝑞! 𝑞! 𝑞!
𝑞! 𝑞! −𝑞! 𝑞!

𝒓 = 𝑸∗𝑟 (4)

 The 4x4 matrices 𝑸 and 𝑸∗ differ only in that the lower-
right-hand 3x3 (skew-symmetric) sub-matrix is transposed.

2.2 Norm and conjugate
Again, the concept of a conjugate quaternion comes as a
natural extension of the conjugacy in complex numbers.
Hence, the conjugate of q is,

𝒒 = 𝑞!,−𝑞!,−𝑞!,−𝑞! = (𝑞!,−𝒗)

where 𝒒 = (𝑞! , 𝑞!, 𝑞!, 𝑞!).
 Accordingly, the norm 𝒒 of q, is given by:

𝒒 = 𝒒𝒒 = 𝑞!! + 𝑞!! + 𝑞!! + 𝑞!!

 From the above, the definition of the inverse quaternion
𝒒!! follows naturally, as:

𝒒!! =
𝒒
𝒒 !

 A very useful relationship between the product matrix 𝑸
of q and the product matrix 𝑸 of the conjugate quaternion 𝑞
can now be easily derived:

𝑸 =

𝑞! 𝑞! 𝑞! 𝑞!
−𝑞! 𝑞! −𝑞! 𝑞!
−𝑞! 𝑞! 𝑞! −𝑞!
−𝑞! −𝑞! 𝑞! 𝑞!

= 𝑸! (5)

 In quite the same way, it can be shown that 𝑸∗ = 𝑸∗!.
 Finally, the useful property of the 4x4 product matrices
𝑸 and 𝑸∗ that they are orthogonal if q is a unit quaternion
(i.e., has a unit norm) is noted (without proof), as it will
come handy in the following sections.

2.3 The composite product between arbitrary
quaternions and 3D vectors
A quaternion can be generally thought of as a scalar and a
vector. In this context, quaternions with a zero scalar part are
representations of 3D vectors. We now define the composite
product operator 𝐿𝒒 𝒓 :𝑯×ℝ! → ℝ! (acting on quaternions
and 3D vectors) between the quaternion q and the vector r
as:

𝐿𝒒 𝒓 = 𝒒𝒓𝒒 = (𝑸𝒓)𝒒 (6)

where 𝒒 = (𝑞! , 𝑞!, 𝑞!, 𝑞!) a general quaternion and
𝒓 = (0 , 𝑟!, 𝑟!, 𝑟!) a 3D vector represented as a purely
imaginary quaternion.
 It can be easily proven that the composite product maps
purely imaginary quaternions onto the same set and that their
norm remains unchanged. Moreover, using the matrices 𝑸
and 𝑸 introduced in (3) and (4) regarding quaternion
products, the composite product of (6) can be written as the
following matrix product:

𝐿𝒒 𝒓 = 𝒒𝒓𝒒!! = 𝑸𝒓 𝒒 = 𝑸∗ 𝑸𝒓 = (𝑸∗!𝑸)𝒓 (7)

 The matrix product 𝑸∗!𝑸 of eq. (8) yields the following
matrix:

𝑸∗!𝑸

=

𝒒 ! 0 0 0
0 𝑞!! + 𝑞!! − 𝑞!! − 𝑞!! 2 𝑞!𝑞! − 𝑞!𝑞! 2(𝑞!𝑞! + 𝑞!𝑞!)
0 2(𝑞!𝑞! + 𝑞!𝑞!) 𝑞!! − 𝑞!! + 𝑞!! − 𝑞!! 2(𝑞!𝑞! − 𝑞!𝑞!)
0 2(𝑞!𝑞! − 𝑞!𝑞!) 2(𝑞!𝑞! + 𝑞!𝑞!) 𝑞!! − 𝑞!! − 𝑞!! + 𝑞!!

(8
)

G. Terzakis, P. Culverhouse, G. Bugmann, S. Sharma and R. Sutton/Journal of Engineering Science and Technology Review 7 (1) (2014) 82 – 93

84

2.4 Unit quaternions as representations of rotations
The attention is now focused solely on unit quaternions. As
stated in the end of sub-section 1.2, the 4x4 product matrices
𝑸 and 𝑸∗ are orthogonal if q is a unit quaternion. Equation
(7) implies that 𝑸∗!𝑸 should also be orthogonal. Most
importantly, the 3x3 lower-right-hand sub-matrix R(q) of
𝑸∗!𝑸,

𝑹(𝑞) =
𝑞!! + 𝑞!! − 𝑞!! − 𝑞!! 2 𝑞!𝑞! − 𝑞!𝑞! 2(𝑞!𝑞! + 𝑞!𝑞!)

2(𝑞!𝑞! + 𝑞!𝑞!) 𝑞!! − 𝑞!! + 𝑞!! − 𝑞!! 2(𝑞!𝑞! − 𝑞!𝑞!)
2(𝑞!𝑞! − 𝑞!𝑞!) 2(𝑞!𝑞! + 𝑞!𝑞!) 𝑞!! − 𝑞!! − 𝑞!! + 𝑞!!

 (9)

is also an orthogonal matrix. In fact, to motivate the
following parameterization, R(q) is a rotation matrix.
 If a quaternion q has 𝒒 = 1 (i.e., unity norm), then this
intuitively implies (as in the case of complex numbers) that
there exists an angle θ such as:

𝒒 = 𝑞!! + 𝒗 ! 𝑠. 𝑡. : 𝑐𝑜𝑠!𝜃 = 𝑞!! 𝑎𝑛𝑑 𝑠𝑖𝑛!𝜃

= 𝒗 !

 From the above, the rotation matrix R(q) can be
parameterized in terms of θ and v. This practically means
that vector v effectively defines an axis about which we
rotate the 3D vector r (the direction of the rotation is
determined by the direction of the axis vector using the
right-hand-thumb rule). The latter can be formalized with the
following theorem [14]:

Theorem 2.1: For any unit quaternion
𝒒 = 𝑐𝑜𝑠 !

!
, 𝑠𝑖𝑛 !

!
𝒗 ,𝒗 ∈ ℝ! and for any vector 𝒓 ∈ ℝ! the

action of the operator, 𝐿𝒒 𝒓 = 𝒒𝒓𝒒 is equivalent to a
rotation about the axis and direction of q (following the
right-hand-thumb rule) by an angle θ.

3. Obtaining a unit quaternion from a rotation matrix
The matrix in (9) provides a straightforward formula for the
conversion between the quaternion form and the
corresponding rotation matrix. The reverse process is
somewhat more complicated due to the inherent ambiguity
in the squared terms contained in the diagonal of R(q). This
ambiguity however is eliminated in the course of the
computations described in the following paragraphs.
 Let 𝑹(𝒒) = 𝑟!" be the given rotation matrix and
𝒒 = (𝑞!, 𝑞!, 𝑞!, 𝑞!) the sought equivalent unit quaternion. By
appropriately multiplying by +1 or -1 the diagonal elements
of R(q) and then adding them together, the following
relationships for 𝑞!!, 𝑞!!, 𝑞!!, 𝑞!! are obtained in terms of
𝑟!!, 𝑟!!and 𝑟!! [15]:

4𝑞!! = 1 + 𝑟!! + 𝑟!! + 𝑟!! (10)

4𝑞!! = 1 + 𝑟!! − 𝑟!! − 𝑟!! (11)

4𝑞!! = 1 − 𝑟!! + 𝑟!! − 𝑟!! (12)

4𝑞!! = 1 − 𝑟!! − 𝑟!! + 𝑟!! (13)

 Also, from the off-diagonal elements of R(q) the
following relationships are obtained with similar processing
of the element pairs (𝑟!", 𝑟!") , (𝑟!", 𝑟!") , (𝑟!", 𝑟!") :

4𝑞!𝑞! = 𝑟!" − 𝑟!" (14)

4𝑞!𝑞! = 𝑟!" − 𝑟!" (15)

4𝑞!𝑞! = 𝑟!" − 𝑟!" (16)

4𝑞!𝑞! = 𝑟!" + 𝑟!" (17)

4𝑞!𝑞! = 𝑟!" + 𝑟!" (18)

4𝑞!𝑞! = 𝑟!" + 𝑟!" (19)

 Equations (10), (11), (12), (13) are the starting point of
the conversion, since one of them will provide the solution
for any one of the components of the quaternion. Each of
these equations will have real solution, which, zero
excluded, corresponds to a negative and a positive number
that share the same absolute value. However, the negative
solution is discarded due to the fact that the angle of rotation
in quaternions cannot exceed π, since any angle greater than
that will be subsumed into the rotation axis vector as a
change of direction and not on the angle itself, which will
fold back in the region 0,𝜋 . In other words, if all the
components of a unit quaternion are negated, then the
resulting quaternion will represent the original rotation
matrix. This means that we are free to choose the sign
(typically positive) of the quaternion component obtained by
one of equations (10-13).

From the above, we may arbitrarily pick a non-
trivial equation out of (10-13) and solve for the rest of the
components using (14-19). For reasons of numerical
stability, it is prudent to choose the greatest solution. Taking
each of equations (10-13) and solving for the rest of the
quaternion components using the appropriate subset of (14-
19) yields the following four possible forms of the solution
(i.e., based on the solution for 𝑞!, 𝑞!, 𝑞!, 𝑞! respectively):

𝒒𝑹 ! (𝑹) =
1
2

1 + 𝑟!! + 𝑟!! + 𝑟!!
𝑟!" − 𝑟!"

1 + 𝑟!! + 𝑟!! + 𝑟!!
𝑟!" − 𝑟!"

1 + 𝑟!! + 𝑟!! + 𝑟!!
𝑟!" − 𝑟!"

1 + 𝑟!! + 𝑟!! + 𝑟!!

 (20)

𝒒𝑹 ! 𝑹 =
1
2

𝑟!" − 𝑟!"
1 + 𝑟!! − 𝑟!! − 𝑟!!

1 + 𝑟!! − 𝑟!! − 𝑟!!
𝑟!" + 𝑟!"

1 + 𝑟!! − 𝑟!! − 𝑟!!
𝑟!" + 𝑟!"

1 + 𝑟!! − 𝑟!! − 𝑟!!

 (21)

G. Terzakis, P. Culverhouse, G. Bugmann, S. Sharma and R. Sutton/Journal of Engineering Science and Technology Review 7 (1) (2014) 82 – 93

85

𝒒𝑹 ! (𝑹) =
1
2

𝑟!" − 𝑟!"
1 − 𝑟!! + 𝑟!! − 𝑟!!

𝑟!" + 𝑟!"
1 − 𝑟!! + 𝑟!! − 𝑟!!

1 − 𝑟!! + 𝑟!! − 𝑟!!
𝑟!" + 𝑟!"

1 − 𝑟!! + 𝑟!! − 𝑟!!

 (22)

𝒒𝑹 ! (𝑹) =
1
2

𝑟!" − 𝑟!"
1 − 𝑟!! − 𝑟!! + 𝑟!!

𝑟!" + 𝑟!"
1 − 𝑟!! − 𝑟!! + 𝑟!!

𝑟!" + 𝑟!"
1 − 𝑟!! − 𝑟!! + 𝑟!!

1 − 𝑟!! − 𝑟!! + 𝑟!!

 (23)

 To choose which solution is the most suitable (with
respect to using the greatest component solution as starting
point) we consider 𝒒𝑹 to be a function 𝒒𝑹 𝑹 : 𝑆𝑂(3) → 𝑯
that maps a rotation matrix to one of the quaternions given
by (20), (21), (22), (23) depending on certain conditions
involving the elements of the diagonal of R. We may use 𝒒𝑹
to implement a simple routine that converts a rotation matrix
to a quaternion [16]:

𝒒𝑹 𝑹 =

𝒒𝑹 ! 𝑹 , 𝑖𝑓 𝑟!! ≥ −𝑟!! , 𝑟!! ≥ −𝑟!! , 𝑟!! ≥ −𝑟!!
𝒒𝑹 ! 𝑹 , 𝑖𝑓 𝑟!! ≤ −𝑟!! , 𝑟!! ≥ 𝑟!! , 𝑟!! ≥ 𝑟!!
𝒒𝑹 ! 𝑹 , 𝑖𝑓 𝑟!! ≥ 𝑟!! , 𝑟!! ≤ 𝑟!! , 𝑟!! ≤ −𝑟!!
𝒒𝑹 ! 𝑹 , 𝑖𝑓 𝑟!! ≤ 𝑟!! , 𝑟!! ≤ −𝑟!! , 𝑟!! ≤ 𝑟!!

 (24)

 For the sake of completeness, the derivation for the set of
inequalities that must hold in order for 𝒒𝑹 ! 𝑹 to be the
preferred solution is shown:
 Assume that for some rotation matrix, we solve
equations (10-13) and find that 𝑞! =

!
!

1 + 𝑟!! − 𝑟!! − 𝑟!!
is the greatest component. The following inequalities will
ther efore be true:

𝑞! ≥ 𝑞! ⇒ 1 + 𝑟!! − 𝑟!! − 𝑟!!

≥ 1 + 𝑟!! + 𝑟!! + 𝑟!!

⇔ 𝑟!! ≤ −𝑟!!
(25)

𝑞! ≥ 𝑞! ⇒ 1 + 𝑟!! − 𝑟!! − 𝑟!!
≥ 1 − 𝑟!! + 𝑟!! − 𝑟!!

⇔ 𝑟!! ≥ 𝑟!! (26)

𝑞! ≥ 𝑞! ⇒ 1 + 𝑟!! − 𝑟!! − 𝑟!!
≥ 1 − 𝑟!! − 𝑟!! + 𝑟!!

⇔ 𝑟!! ≥ 𝑟!! (27)

 The inequalities found in (25-27) are indeed the ones that
should hold if 𝒒𝑹 ! 𝑹 is chosen. The derivation of the
other 3 conditions is analogous.

4. Axis –Angle parameterization
Any rotation is equivalent to a rotation about one axis by an
angle θ. In the axis-angle representation, if n is some vector
on the direction of the axis about which the rotation takes
place, then this vector completely represents the given
rotation, if 𝒏 = 𝜃. In other words, in order to fully specify
a rotation, only an angle θ and a direction vector 𝒏 =
𝑛! 𝑛! 𝑛! ! about which the rotation takes place are

required; and since one is free to choose the length of this
vector, it would be reasonable to make it so that this length
encodes the angle of the rotation, θ. Simply put, the axis-
angle representation is nothing but a very compact encoding
of a rotation with 3 DOF using the 3 components 𝑛!, 𝑛!, 𝑛!
of the vector that defines the rotation in a way such that:

𝑛!! + 𝑛!! + 𝑛!! = 𝜃 (28)

where 𝜃 ∈ 0,𝜋 .
 To obtain the rotation matrix from some given axis-angle
representation, one may simply employ the formula of
Rodrigues [17]:

𝑹 = 𝑰𝟑 +
𝑠𝑖𝑛𝜃
𝜃 𝒏 𝒙 +

1 − 𝑐𝑜𝑠𝜃
𝜃! 𝒏𝒏! − 𝑰𝟑 (29)

where the direction of the rotation is defined by the direction
of n using the right-hand-thumb rule, I3 is the 3x3 unity
matrix and 𝒏 𝒙 is the cross-product skew symmetric matrix:

𝒏 𝒙 =
0 −𝑛! 𝑛!
𝑛! 0 −𝑛!
−𝑛! 𝑛! 0

 The rotation is already axis-angle parameterized in (29)
and one could argue against whether it is necessary to use
quarternions in order to obtain the derivatives of R, since
one can simply work directly on Rodrigues’ formula. As it
turns out, obtaining the axis-angle parameterized quaternion
offers the advantage of putting things somewhat into
perspective by using the chain rule for derivation on the
quaternion and generally improving an, otherwise, very long
and painful series of computations.

5. Representing orientation with unit quaternions

The quaternion representation of a rotation shown in (9) is
convenient and can be generally manipulated easily inside
expressions. Moreover, it ensures that ambiguous
configurations such as gimbal locks will not occur.
However, this representation does not constrain the
quaternion components to yield a unit norm. There is an
extra degree of freedom (for a total of 4 DOF) to accounted
for while the rotation parameters are being estimated
throughout iterative optimization algorithms. It is therefore
necessary to resort to a method of enforcing the unit-norm
constraint during optimization, such as Lagrange multipliers
[18]; alternatively, it is preferable to parameterize the
quaternion in a way such that the number of DOF of the
representation drop down to 3.

G. Terzakis, P. Culverhouse, G. Bugmann, S. Sharma and R. Sutton/Journal of Engineering Science and Technology Review 7 (1) (2014) 82 – 93

86

5.1 Unit quaternions using the axis-angle
parameterization
To achieve the minimum number of DOF (i.e., 3), it is
necessary to revert back to the axis-angle encoding, this time
using the following quaternion parameterization:

𝒒 = 𝑐𝑜𝑠
𝜐
2 , 𝑠𝑖𝑛

𝜐
2
𝑢!
𝜐 ,
𝑢!
𝜐 ,

𝑢!
𝜐 (20)

where 𝒖 = 𝑢! 𝑢! 𝑢! ! is the rotation axis vector and
𝜐 = 𝑢!! + 𝑢!! + 𝑢!! is the norm of u. The degrees of
freedom of q have now dropped to 3.

5.2 Obtaining the derivatives of the rotation matrix with
respect to the axis-angle vector
 Perhaps the most important entity in iterative non-linear
optimization is the matrix of partial derivatives of the
objective function, otherwise known as the Jacobian. It is
therefore necessary (or preferred) to obtain analytical
expressions of the derivatives of the rotation matrix with
respect to the axis vector u. The general idea behind the
derivation is to obtain the partial derivatives of the rotation
matrix with respect to 𝑞!, 𝑞!, 𝑞!, 𝑞! and the partial
derivatives of 𝑞!(𝒖), 𝑞!(𝒖), 𝑞! 𝒖 , 𝑞!(𝒖) with respect to u
and apply the chain rule to reach the sought result.

Specifically, the derivatives of R(q) with respect to u are given by:

𝜕𝑹(𝒒(𝒖))

𝜕𝑢!
=

𝜕𝑹(𝒒)
𝜕𝑞!

!

!!!

𝜕𝑞!(𝒖)
𝜕𝑢!

(31)

 A series of steps that leads to the calculation of the
partial derivatives of a rotation matrix, given that the axis-
angle vector u is provided, will now be described:
 In the first step the corresponding quaternion is
calculated as follows:

𝜕𝒒(𝒖)
𝜕𝑢!

=

−
𝑢!𝑠𝑖𝑛

𝜐
2

2𝜐
𝑠𝑖𝑛 𝜐2
𝜐 +

𝑢!!𝑐𝑜𝑠
𝜐
2

2𝜐! −
𝑢!!𝑠𝑖𝑛

𝜐
2

𝜐!

𝑢!𝑢!
𝑐𝑜𝑠 𝜐2
2𝜐!

−
𝑠𝑖𝑛 𝜐2
𝜐!

𝑢!𝑢!
𝑐𝑜𝑠 𝜐2
2𝜐! −

𝑠𝑖𝑛 𝜐2
𝜐!

=
1
2𝜐!

−𝜐!𝑢!𝑠𝑖𝑛
𝜐
2

2 𝑢!! + 𝑢!! 𝑠𝑖𝑛
𝜐
2 + 𝑢!

!𝜐𝑐𝑜𝑠
𝜐
2

𝑢!𝑢! 𝜐𝑐𝑜𝑠
𝜐
2 − 2𝑠𝑖𝑛

𝜐
2

𝑢!𝑢! 𝜐𝑐𝑜𝑠
𝜐
2 − 2𝑠𝑖𝑛

𝜐
2

 (38)

𝜕𝒒(𝒖)
𝜕𝑢!

=

−
𝑢!𝑠𝑖𝑛

𝜐
2

2𝜐

𝑢!𝑢!
𝑐𝑜𝑠 𝜐2
2𝜐!

−
𝑠𝑖𝑛 𝜐2
𝜐!

𝑠𝑖𝑛 𝜐2
𝜐 +

𝑢!!𝑐𝑜𝑠
𝜐
2

2𝜐! −
𝑢!!𝑠𝑖𝑛

𝜐
2

𝜐!

𝑢!𝑢!
𝑐𝑜𝑠 𝜐2
2𝜐! −

𝑠𝑖𝑛 𝜐2
𝜐!

=
1
2𝜐!

−𝜐!𝑢!𝑠𝑖𝑛
𝜐
2

𝑢!𝑢! 𝜐𝑐𝑜𝑠
𝜐
2 − 2𝑠𝑖𝑛

𝜐
2

2 𝑢!! + 𝑢!! 𝑠𝑖𝑛
𝜐
2 + 𝑢!

!𝜐𝑐𝑜𝑠
𝜐
2

𝑢!𝑢! 𝜐𝑐𝑜𝑠
𝜐
2 − 2𝑠𝑖𝑛

𝜐
2

 (39)

𝜕𝒒(𝒖)
𝜕𝑢!

=

−
𝑢!𝑠𝑖𝑛

𝜐
2

2𝜐

𝑢!𝑢!
𝑐𝑜𝑠 𝜐2
2𝜐!

−
𝑠𝑖𝑛 𝜐2
𝜐!

𝑢!𝑢!
𝑐𝑜𝑠 𝜐2
2𝜐! −

𝑠𝑖𝑛 𝜐2
𝜐!

𝑠𝑖𝑛 𝜐2
𝜐

+
𝑢!!𝑐𝑜𝑠

𝜐
2

2𝜐!
−
𝑢!!𝑠𝑖𝑛

𝜐
2

𝜐!

=
1
2𝜐!

−𝜐!𝑢!𝑠𝑖𝑛
𝜐
2

𝑢!𝑢! 𝜐𝑐𝑜𝑠
𝜐
2 − 2𝑠𝑖𝑛

𝜐
2

𝑢!𝑢! 𝜐𝑐𝑜𝑠
𝜐
2 − 2𝑠𝑖𝑛

𝜐
2

2 𝑢!! + 𝑢!! 𝑠𝑖𝑛
𝜐
2 + 𝑢!

!𝜐𝑐𝑜𝑠
𝜐
2

 (40)

G. Terzakis, P. Culverhouse, G. Bugmann, S. Sharma and R. Sutton/Journal of Engineering Science and Technology Review 7 (1) (2014) 82 – 93

87

𝒒 = 𝑐𝑜𝑠
𝜐
2 𝑠𝑖𝑛

𝜐
2
𝑢!
𝜐 𝑠𝑖𝑛

𝜐
2
𝑢!
𝜐 𝑖𝑛

𝜐
2
𝑢!
𝜐 (32)

where 𝜐 is the norm of the vector u that encodes angle and
axis, such that, 𝜐 = 𝑢!! + 𝑢!! + 𝑢!!.
 Obtaining u from q is fairly straightforward, given that
𝜐 ∈ 0,𝜋 ; we obtain 𝜐 = 2𝑎𝑐𝑜𝑠𝑞! and thereafter,
𝒖 = !!"#$!!

!"# !"#$!!
𝑞! 𝑞! 𝑞! !.

 Let now 𝑭𝒋 =
!𝑹(𝒒)
!!!

 be the matrix of partial derivatives

of the rotation with respect to the quaternion components
𝑞! , 𝑗 = 0, 1, 2, 3. The derivatives can be easily calculated as
follows:

𝑭𝟎 =
𝜕𝑹(𝒒)
𝜕𝑞!

= 2
𝑞! −𝑞! 𝑞!
𝑞! 𝑞! −𝑞!
−𝑞! 𝑞! 𝑞!

 (33)

𝑭𝟏 =
𝜕𝑹(𝒒)
𝜕𝑞!

= 2
𝑞! 𝑞! 𝑞!
𝑞! −𝑞! −𝑞!
𝑞! 𝑞! −𝑞!

 (34)

𝑭𝟐 =
𝜕𝑹(𝒒)
𝜕𝑞!

= 2
−𝑞! 𝑞! 𝑞!
𝑞! 𝑞! 𝑞!
−𝑞! 𝑞! −𝑞!

 (35)

𝑭𝟑 =
𝜕𝑹(𝒒)
𝜕𝑞!

= 2
−𝑞! −𝑞! 𝑞!
𝑞! −𝑞! 𝑞!
𝑞! 𝑞! 𝑞!

 (36)

 At the next step the partial derivatives of the components
of the quaternion with respect to the axis-angle vector u are
computed:

𝑮 𝒖 =
𝜕𝒒(𝒖)
𝜕𝒖 =

𝜕𝒒(𝒖)
𝜕𝑢!

𝜕𝒒(𝒖)
𝜕𝑢!

𝜕𝒒(𝒖)
𝜕𝑢!

 (37)

 The columns of G(u) are given below in terms of u1, u2,
u3 and υ:
 The last step trivially involves the substitution of the
results obtained with (33)-(40) in (31). Specifically, by
adopting the convention 𝑮 𝒖 = 𝑔!" , the 3 partial
derivatives of the rotation matrix with respect to u are given
by the following:

𝜕𝑹(𝒒(𝒖))
𝜕𝑢!

=
𝜕𝑹(𝒒)
𝜕𝑞!

!

!!!

𝜕𝑞!(𝒖)
𝜕𝑢!

= 𝑭𝒋𝑔!"

!

!!!

 (41)

6. A rational parameterization using stereographic

projection

The axis-angle parameterization presented in section 5 uses
the minimum number of 3 DOF required to specify a
rotation and it can be computed in a straightforward manner.
However, the derivatives of the rotation matrix in (38), (39),
(40) contain expressions in which irrational functions

(sinusoids) are present. The latter implies that, in the course
of computations, these functions will certainly inflict a
certain amount of approximations to the final result thereby
deteriorating its numerical accuracy. Hence, a rational
parameterization, if possible, is always superior to one that
makes use of irrational functions. It is possible to achieve
such a parameterization by considering a homeomorphism
from ℝ! to the 4D unit sphere.

6.1 Projecting a 3D point on the 4D hypersphere
Unit quaternions can be considered as a hypersphere in 4D
space defined by the following equation in terms of q0, q1,
q2, q3:

𝑞!! + 𝑞!! + 𝑞!! + 𝑞!! = 1 (42) (42)

 Let now 𝑺 ≡ (0, 0, 0,−1) be the “south pole” of this 4D
sphere and also let π be the 3D equatorial hyperplane
containing the origin of ℝ! as shown in figure 1. Let now
r(t) be the ray from S that passes through any point (𝑥, 𝑦, 𝑧)
of the equatorial plane, parameterized by t (Note that
parentheses are used to denote points, while square brackets
are used for vectors):

𝑟 𝑡 = 0, 0, 0,−1 + 𝑡 𝑥 𝑦 𝑧 1 ! (43)

 The ray intersects the surface of the sphere at P. Point P
is therefore back-projected on π through the ray.

Fig. 1. The 4D spherical hypersurface of unit quaternions visualized as
a 3D sphere. Point S is the center of projection and (x, y, z) a point on
the 3D hyperplane. The ray r(t) intersects the surface of the sphere at P.
Since P lies on the sphere, its coordinates should verify (42).
Moreover, it also lies on the ray, therefore substituting (43)
in (42) yields,

𝑡𝑥 ! + 𝑡𝑦 ! + 𝑡𝑧 ! + 𝑡 − 1 ! = 1

which provides the following non-trivial solution for t in
terms of x, y, z:

𝑡 =
2

𝑥! + 𝑦! + 𝑧! + 1 (44)

 Finally, substituting (44) into (43), one obtains the
coordinates of a unit quaternion in x-y-z parameters:

𝒒 =
2𝑥

𝛼! + 1 ,
2𝑦

𝛼! + 1 ,
2𝑧

𝛼! + 1 ,
1 − 𝛼!

𝛼! + 1 (45)

where 𝛼! = 𝑥! + 𝑦! + 𝑧!.

π

r(t

P
(x,	 y,	

S

G. Terzakis, P. Culverhouse, G. Bugmann, S. Sharma and R. Sutton/Journal of Engineering Science and Technology Review 7 (1) (2014) 82 – 93

88

 It is worth noting here that, in order to express the center
of projection in terms of the stereographic parameters, one
needs to include “infinite” values for the parameters x, y, z.
This means that the quaternion 0 ,0,0,−1 cannot be
expressed with real values of the stereographic projection
parameters. In practice however, one may use very big
values for x, y and z and get a very close approximation of
the quaternion. It turns out, as shown in the results, that the
stereographic projection parameters are stable and converge
fast, even for tolerance below 10-9. The tradeoff to pay here
is the very high values for the parameter vector; however, as
shown later, these values are well within representation
range.

6.2 Finding the back-projection of a quaternion on the
equatorial plane

Given a point 𝝍 = (𝑥, 𝑦, 𝑧), the coordinates 𝑞!, 𝑞!, 𝑞!, 𝑞! of
the quaternion can be calculated straight off (45). The
opposite conversion is equally straightforward, without
many computations involved.
 Let 𝑞!, 𝑞!, 𝑞!, 𝑞! a given unit quaternion. As a first
step, one should calculate α:

𝛼! =
1 − 𝑞!
𝑞! + 1

 (46)

 Therefore, the x, y, z coordinates of the quaternion’s
back-projection on the equatorial plane can be easily
calculated as follows:

𝝍 = 𝑥, 𝑦, 𝑧

=
𝑞!(𝛼! + 1)

2 ,
𝑞!(𝛼! + 1)

2 ,
𝑞!(𝛼! + 1)

2

⇔ 𝝍 =
𝑞!

1 + 𝑞!
,
𝑞!

1 + 𝑞!
,
𝑞!

1 + 𝑞!

(47)

6.3 Rotation matrix derivatives with respect to equatorial

plane point coordinates
The process of finding the derivatives of the rotation matrix
R(q) is directly analogous to the one described in section
5.2. The only difference has to do with the partial derivatives
of the quaternion with respect to the point 𝝍:

𝑯 𝝍 =
𝜕𝒒(𝝍)
𝜕𝝍 =

𝜕𝒒(𝝍)
𝜕𝑥

𝜕𝒒(𝝍)
𝜕𝑦

𝜕𝒒(𝝍)
𝜕𝑧

 (48)

where,

𝜕𝒒(𝝍)
𝜕𝑥 =

2
𝑎! + 1 −

4𝑥!

(𝑎! + 1)!

−
4𝑥𝑦

𝑎! + 1 !

−
4𝑥𝑧

𝑎! + 1 !

−4𝑥
𝑎! + 1 !

= −
4

(𝑎! + 1)!

2𝑥! − 𝑎! + 1
2
𝑥𝑦
𝑥𝑧
𝑥

(49)

𝜕𝒒(𝝍)
𝜕𝑦 =

−
4𝑥𝑦

(𝑎! + 1)!
2

𝑎! + 1
−

4𝑦!

𝑎! + 1 !

−
4𝑦𝑧

𝑎! + 1 !

−4𝑦
𝑎! + 1 !

= −
4

(𝑎! + 1)!

𝑦𝑥
2𝑦! − 𝑎! + 1

2
𝑦𝑧
𝑦

(50)

𝜕𝒒(𝝍)
𝜕𝑧 =

−
4𝑥𝑧

(𝑎! + 1)!

−
4𝑦𝑧

𝑎! + 1 !

2
𝑎! + 1 −

4𝑧!

𝑎! + 1 !

−4𝑧
𝑎! + 1 !

= −
4

(𝑎! + 1)!

𝑧𝑥
𝑧𝑦

2𝑧! − 𝑎! + 1
2
𝑧

(51)

 Finally, the derivatives of the rotation matrix can be
calculated using the matrices 𝑭𝟎,𝑭𝟏,𝑭𝟐,𝑭𝟑 calculated in
(33), (34), (35), (36):

𝜕𝑹(𝒒(𝝍))
𝜕𝑥 =

𝜕𝑹(𝒒)
𝜕𝑞!

!

!!!

𝜕𝑞!(𝝍)
𝜕𝑥 = 𝑭𝒋

!

!!!

𝜕𝑞!(𝝍)
𝜕𝑥 (52)

𝜕𝑹(𝒒(𝝍))

𝜕𝑦 =
𝜕𝑹(𝒒)
𝜕𝑞!

!

!!!

𝜕𝑞!(𝝍)
𝜕𝑦 = 𝑭𝒋

!

!!!

𝜕𝑞!(𝝍)
𝜕𝑦 (53)

𝜕𝑹(𝒒(𝝍))

𝜕𝑧 =
𝜕𝑹(𝒒)
𝜕𝑞!

!

!!!

𝜕𝑞!(𝝍)
𝜕𝑧 = 𝑭𝒋

!

!!!

𝜕𝑞!(𝝍)
𝜕𝑧 (54)

 Similarly to (41), and using (33)-(36), we obtain the
derivative of 𝑅(𝜓) as follows:

𝜕𝑹(𝒒(𝝍))

𝜕𝜓!
=

𝜕𝑹(𝒒)
𝜕𝑞!

!

!!!

𝜕𝑞!(𝝍)
𝜕𝜓!

= 𝑭𝒋ℎ!"

!

!!!

 (55)

where 𝜓!,𝜓!,𝜓! = 𝑥, 𝑦, 𝑧 and 𝑯 𝝍 = ℎ!" .

6.4 Parameter differentiation and propagation of

covariance
Given the multiplicity of quaternion parameterizations, the
need to differentiate the parameter set of one kind with
respect to the equivalent parameters of another type will
naturally arise, not only in the context of offline bundle
adjustment, but also in online filtration algorithms involving

G. Terzakis, P. Culverhouse, G. Bugmann, S. Sharma and R. Sutton/Journal of Engineering Science and Technology Review 7 (1) (2014) 82 – 93

89

the estimation of position and orientation such as the
Kalman filter in numerous applications in mobile
robotics[19]. It is much too often convenient to represent a
rotation directly by its three parameters in the state vector of
a temporal model, thereby ensuring the unit normal
constraint of the respective quaternion [20]. However,
angular measurements are naturally related to the axis angle
parameterization; therefore, the need to differentiate the
stereographic projection parameters with respect to the axis
vector components will rise at the stage in which the
likelihood of a set of inertial measurements (gyro) will be
incorporated to the filtration process. In general, one may
choose to perform optimization with a specific type of
parameters, yet find it convenient to propagate variance in
terms of a different type of parameters. The most common
method to propagate variance throughout non-linear
relations would be to linearly approximate one set of
parameters with another using the Taylor series.
 The derivatives of the equatorial plane coordinates
𝝍 = 𝑥, 𝑦, 𝑧 with respect to the quaternion q follow from
the equations in (47):

𝜕𝝍
𝜕𝒒 =

1
𝑞! + 1 !

𝑞! + 1 0 0 −𝑞!
0 𝑞! + 1 0 −𝑞!
0 0 𝑞! + 1 −𝑞!

 (56)

 From equations (56) and (38-40) and by employing the
chain rule, the derivatives of the stereographic projection
parameters 𝝍 = (𝑥, 𝑦, 𝑧) with respect to the axis-angle
parameters 𝒖 = 𝑢!, 𝑢!, 𝑢! can be computed as follows:

𝜕𝝍
𝜕𝒖 =

𝜕𝝍
𝜕𝒒

𝜕𝒒
𝜕𝑢!

𝜕𝒒
𝜕𝑢!

𝜕𝒒
𝜕𝑢!

=
𝜕𝝍
𝜕𝒒

𝜕𝒒
𝜕𝒖 (57)

 In order to obtain the derivative of axis-angle parameters
with respect to stereographic projection parameters, it is first
necessary to compute !!

!"
:

𝜕𝒖
𝜕𝒒

=

2𝑞!
1 − 𝑞!!

+
2𝑞!𝑞! cos!! 𝑞!
1 − 𝑞!! !/!

2 cos!! 𝑞!
1 − 𝑞!! !/! 0 0

2𝑞!
1 − 𝑞!!

+
2𝑞!𝑞! cos!! 𝑞!
1 − 𝑞!! !/! 0

2 cos!! 𝑞!
1 − 𝑞!! !/! 0

2𝑞!
1 − 𝑞!!

+
2𝑞!𝑞! cos!! 𝑞!
1 − 𝑞!! !/! 0 0

2 cos!! 𝑞!
1 − 𝑞!! !/!

(58
)

 Once again, from equations (56) and (48)-(50) and by
employing the chain rule we obtain the derivative of u with
respect to ψ:

𝜕𝒖
𝜕𝝍 =

𝜕𝒖
𝜕𝒒

𝜕𝒒
𝜕𝑥

𝜕𝒒
𝜕𝑦

𝜕𝒒
𝜕𝑧

=
𝜕𝒖
𝜕𝒒

𝜕𝒒
𝜕𝝍 (59)

 One can now propagate covariance from one set of
parameters to another by employing the derivatives in (57)
and (59). The covariance of u, let 𝜮𝒖, in terms of ψ is
estimated as,

𝜮𝒖 =
𝜕𝒖
𝜕𝝍𝜮𝝍

𝜕𝒖
𝜕𝝍

!

 (60)

 And the covariance of ψ , let 𝜮𝝍, in terms of u is:.

𝜮𝝍 =
𝜕𝝍
𝜕𝒖 𝜮𝒖

𝜕𝝍
𝜕𝒖

!

(61)

 Another very typical case of variance propagation
concerns incremental updates of the orientation quaternion
through time in the context of a stochastic process. Using (3)
and (4) the derivative of the quaternion product 𝒑 = 𝒘𝒒 in
terms of the components of w is, !𝒘𝒒

!𝒘
= !𝑸∗𝒘

!𝒘
= 𝑸∗, whereas

the derivative in terms of q is !𝒘𝒒
!𝒒

= !𝑾𝒒
!𝒒

=𝑾. Hence, the
covariance of the product in terms of both factors can be
estimated as follows:

𝜮𝒑 =
𝜕𝒑
𝜕𝒘

𝜕𝒑
𝜕𝒒

𝜮𝒘𝒘 𝜮𝒘𝒒
𝜮𝒒𝒘 𝜮𝒒𝒒

𝜕𝒑
𝜕𝒘

!

𝜕𝒑
𝜕𝒒

!

= 𝑸∗𝜮𝒘𝒘 𝑸∗ ! +𝑾𝜮𝒒𝒘 𝑸∗ !

+ 𝑸∗𝜮𝒘𝒒𝑾! +𝑾𝜮𝒒𝒒𝑾!

(62)

where 𝜮𝒘𝒘, 𝜮𝒒𝒒, 𝜮𝒘𝒒 and 𝜮𝒒𝒘 are the four 4x4 sub-blocks of
the covariance matrix of p.
 In most cases, q and w will be independent, hence
𝜮𝒘𝒒 = 𝜮𝒒𝒘 = 0 and the propagated variance becomes,

𝜮𝒑 = 𝑸∗𝜮𝒘𝒘 𝑸∗ ! +𝑾𝜮𝒒𝒒𝑾!

7. Numerical results

Both techniques described in the previous sections were
employed for various steepest (gradient) descent[11] and
Levenberg-Marquardt[12] runs for randomly generated
rotation matrices. Figure 2 illustrates the average gradient
norm for both parameterizations over a period of 1000
iterations using four different learning rate values (0.0003,
0.0006, 0.001 and 0.01) during steepest descent. Figures 3
and 4 show plots of the average number of iterations (to
convergence) and achieved accuracy of the two
aforementioned schemes in the context of the Levenberg –
Marquardt algorithm.

7.1 Steepest descent
It is evident from the results that the stereographic projection
parameter vector produces a very steep gradient; hence the
oscillatory behavior for higher learning rates (Figure 2a).

G. Terzakis, P. Culverhouse, G. Bugmann, S. Sharma and R. Sutton/Journal of Engineering Science and Technology Review 7 (1) (2014) 82 – 93

90

 Fig. 2. The average gradient norm plots for a sequence of 10 steepest
descent executions regarding the estimation of a randomly generated
rotation matrix. a) Learning rate a=0.01, b) Learning rate a = 0.001, c)
Learning rate a = 0.0006, d) Learning rate a = 0.003.

 For the same learning rate, the axis-angle parameter
vector introduces a very smooth and fast convergence.
However, for lower learning rates (a=0.001, 0.0006, 0.0003),
the stereographic parameter vector overshoots in the
beginning (roughly until to the 40th iteration), but then it
descents smoothly to zero, whereas the gradient of the axis-
angle parameter vector is significantly slowed down, to the
point that, practically, for learning rates 0.0006 and 0.0003
the process does not converge before the 1000th iteration.
 The plots of Figure 2 demonstrate the average rate of
convergence over the entire descent process, but they do not
reveal the accuracy of the approximation following the
1000th step, since they fail to visualize points that lie
exponentially close to zero. Tables 1, 2 and 3 present the
average error (Frobenius norm of the difference between the
estimated rotation and the actual rotation) with regards to the
two parameterization approaches for the four learning rates
mentioned earlier (0.01, 0.001, 0.0003 and 0.0006)
following 500, 1000 and 1500 iterations respectively.

Table 1. The average error over ten steepest descents
concerning a randomly generated rotation matrix after 500
iterations for a = 0.01, 0.001, 0.0006, 0.0003.

 500 iterations
a 𝐸 𝑅!"! 𝑢 − 𝑅 𝐸 𝑅!"# 𝜓 − 𝑅

0.01 0.0389 0.5958
0.001 0.7812 0.3490

0.0006 0.7146 0.0596
0.0003 1.1679 0.1636

Table 2. The average error over ten steepest descents
concerning a randomly generated rotation matrix after 1000
iterations for a = 0.01, 0.001, 0.0006, 0.0003.

 1000 iterations
a 𝐸 𝑅!"# 𝑢 − 𝑅 𝐸 𝑅!"# 𝜓 − 𝑅

0.01 0.0013 0.3549
0.001 0.0722 1.0276 x10-6

0.0006 0.2583 6.9187x10-6
0.0003 0.4918 0.0078

Table 3. The average error over ten steepest descents
concerning a randomly generated rotation matrix after 1500
iterations for a = 0.01, 0.001, 0.0006, 0.0003.

 1500 iterations
a 𝐸 𝑅!"# 𝑢 − 𝑅 𝐸 𝑅!"# 𝜓 − 𝑅

0.01 1.4828x10-15 0.1397
0.001 0.1192 3.8231 x10-7

0.0006 0.4449 5.3234 x10-7
0.0003 0.2440 1.6585 x10-7

 The magnitude of the error also suggests that the
stereographic projection parameter vector yields a more
aggressive gradient than the axis-angle parameters. The
tradeoff for this steep gradient is the lack of stability for
higher values of the learning rate, in which cases, the axis-
angle parameters converge fast with approximation errors of
order of magnitude less than 10-16. On the other hand, for
smaller learning rates (<0.001), the stereographic projection
parameters converge much faster and the order of the error is
roughly at 10-7.

G. Terzakis, P. Culverhouse, G. Bugmann, S. Sharma and R. Sutton/Journal of Engineering Science and Technology Review 7 (1) (2014) 82 – 93

91

7.2 Levenberg-Marquardt
The Levenberg – Marquardt algorithm is one of the most
preferred, if not the recommended method for orientation
and position refinement in computer vision, robotics (bundle
adjustment or iterative Kalman filter) and relative fields such
as 3D graphics [21-24]. The algorithm uses an adaptive
parameter to switch between gradient (steepest) descent and
Newton – Raphson[11] iteration in an adaptive manner
which will guarantee convergence to a local minimum.
Given that the problem is convex, then the method ideally
should always reach the global minimum.

Fig. 3. Performance comparison in the context of LM
iteration with a fixed starting point for 20 error tolerance
values (negative log scale). a) Plot of average number of
steps (log scale) required to reach the preset tolerance. b)
Plot of average error norm(log scale) following
convergence.

 Using the two parameterizations, a series of 5 LM
executions were performed for 20 different error tolerance
values using randomly generated rotation matrices and
common starting points (a rotation matrix corresponding to
π/4 about all three axes). For each set of executions, the
average number of iterations to convergence and final error
norm was recorded (Figure 3).

Fig. 4. Performance comparison in the context of LM iteration with
random starting point for 20 error tolerance values (negative log scale).
a) Plot of average number of steps (log scale) required to reach the
preset tolerance. b) Plot of average error norm (log scale) following
convergence.

 The results clearly suggest superiority of the
stereographic projection over the axis-angle
parameterization. In fact, the average number of iterations to
convergence lies in the range of 6-39 steps, while the
respective numbers for the axis-angle parameters range from
11 to even 1887.5. In fact, with the stereographic
parameters, lowering the error tolerance by 10 units in the
negative log scale has practically no effect in the execution
time. Moreover, as shown in Figure 3b, the achieved average
error norm by the stereographic projection is typically equal
to or less than the average achieved error norm by the axis-
angle parameters.
 The same experimentation was repeated with random
starting points (Figure 4). The results indicate that, once
again, the stereographic projection parameters demonstrate a
very fast and stable converge in the range of 12-50 steps. On
the other hand, it is worth noting that in a total of 100 LM
executions with random starting point, the axis-angle
parameters failed to converge 3 times (timeout set to of
20,000 steps), hence the spikes in the respective plot.

7.3 Convergence to the south pole
The only point on the unit sphere that cannot be represented
with real values of the stereographic projection parameters is

G. Terzakis, P. Culverhouse, G. Bugmann, S. Sharma and R. Sutton/Journal of Engineering Science and Technology Review 7 (1) (2014) 82 – 93

92

the chosen center of projection, in our case, the quaternion
0, 0, 0,−1 .

Fig. 5. Performance comparison in the context of LM iteration for
randomly generated quaternions in the neighborhood of the south pole.
a) Plot of average number of steps required to reach the preset tolerance.
b) Plot of average error norm (log scale) following convergence.

 One would expect the LM iteration to demonstrate
instability in the convergence process and the parameter
vector to explode. Surprisingly, none of the two happens
(Figure 5). The experiment of section 7.2 was repeated using
quaternions in a very close vicinity of the south pole. In
particular, we generated random quaternions of the form:

𝒒 = 𝛿𝑟, 𝛿𝑟, 𝛿𝑟,− 0.6 + 4𝛿𝑟 / 3 𝛿𝑟 ! + 0.6 + 4𝛿𝑟 !

where 𝛿 = 0.01 and r is a random number in 0,1 . This
time, in order to push things further to the extremes, the
desired tolerance levels were shifted to very low numbers in
the range of 2 – 8 in the negative log scale.
 Convergence remains extremely fast (Figure 5a) and the
growth of the parameters follows the tolerance in a linear
fashion (Figure 6). This means that the south pole can be
well represented in practice with accuracy equal to the one
of any other point on the sphere with the very “cheap”
tradeoff of using relatively large numbers, yet clearly well
within floating point representation range.

Fig. 6. Average norm of the stereographic projection parameter vector
for preset tolerance in the range of 10-3 to 10-8.

8. Conclusions

Two parameterization schemes for rotation matrices in terms
of quaternions were presented in this paper. The methods are
introduced in a way such as to provide the intuition and
formulas to the aspiring programmer of optimization
routines such as bundle adjustment, or non-linear Kalman
filters in the context of problems in robotics and/or computer
vision.
 The first parameterization described in section 5
concerns the widely known axis-angle encoding of a rotation
in a single 3D axis vector by choosing its norm to be equal
to the angle of the rotation. This scheme is generally
flexible, widely used and easy to implement in any
programming language. However, it makes rather extensive
use of irrational trigonometric functions inside the
expressions of the derivatives, thereby subjecting the final
result to several additional approximations. Another
practical drawback of this approach has to do with the fact
that the gradient contains the third power of the rotation
angle in the denominator, which naturally yields instability
when dealing with small perturbations. In practice, this
parameterization introduces instabilities in convergence
(steps are in the range of 12-20,000 or more), depending on
the sought orientation and starting point.
 The second parameterization introduced in section 6 is
motivated by the homeomorphic relationship between the
4D unit sphere and the 3D projective space. With this
approach, unit quaternions are parameterized by a point in a
3D equatorial hyperplane which is projected onto the 4D
unit hypersphere via a simple stereographic projection. The
parameterization is numerically superior to the one using the
axis-angle approach, in the sense that all expressions in the
derivatives turn out to be rational functions with less
complex expressions in the numerator and denominator
when compared to the respective ones obtained with the
axis-angle parameters. Last but not least, back and forward
projections between the plane and the sphere (i.e.,
conversions between the quaternion and its respective
parameter vector) are done rationally with very little
computations. The aforementioned superiority was observed
in practice during steepest descent and LM executions for
randomly generated rotations. The stereographic projection
parameters behave very robustly in terms of convergence
regardless of starting point and sought orientation.
Experimentation showed that the “south pole” of the
projection, although theoretically not representable by real
values of the parameters, it is however very much
“reachable” by the LM algorithm at same speed and
accuracy as any other quaternion on the sphere. Moreover,

G. Terzakis, P. Culverhouse, G. Bugmann, S. Sharma and R. Sutton/Journal of Engineering Science and Technology Review 7 (1) (2014) 82 – 93

93

the performance (convergence achieved within 12-48 steps
for all error tolerance settings) suggests that the method is

suitable for use in real-time applications.

References

	
[1]	 A. H. Watt and A. Watt, 3D computer graphics vol. 2: Addison-

Wesley New York, 2000.
[2] B. Triggs, et al., "Bundle adjustment—a modern synthesis,"

Vision algorithms: theory and practice, pp. 153-177, 2000.
[3] R. Hartley, et al., Multiple view geometry in computer vision vol.

2: Cambridge Univ Press, 2003.
[4] R. Negenborn, "Robot localization and kalman filters," Citeseer,

2003.
[5] B. M. Bell and F. W. Cathey, "The iterated Kalman filter update

as a Gauss-Newton method," Automatic Control, IEEE
Transactions on, vol. 38, pp. 294-297, 1993.

[6] K. W. Spring, "Euler parameters and the use of quaternion
algebra in the manipulation of finite rotations: a review,"
Mechanism and machine theory, vol. 21, pp. 365-373, 1986.

[7] J. Schmidt and H. Niemann, "Using quaternions for
parametrizing 3–D rotations in unconstrained nonlinear
optimization," 2001, pp. 399-406.

[8] M. D. Wheeler and K. Ikeuchi, Iterative estimation of rotation
and translation using the quaternion: School of Computer
Science, Carnegie Mellon University, 1995.

[9] H. Schaub and J. L. Junkins, "Stereographic orientation
parameters for attitude dynamics: A generalization of the
Rodrigues parameters," Journal of the Astronautical Sciences,
vol. 44, pp. 1-19, 1996.

[10] P. Tsiotras and J. M. Longuski, "A new parameterization of the
attitude kinematics," Journal of the Astronautical Sciences, vol.
43, pp. 243-262, 1995.

[11] J. Stoer, et al., Introduction to numerical analysis vol. 2: Springer
New York, 1993.

[12] D. W. Marquardt, "An algorithm for least-squares estimation of
nonlinear parameters," Journal of the Society for Industrial &
Applied Mathematics, vol. 11, pp. 431-441, 1963.

[13] J. J. Moré, "The Levenberg-Marquardt algorithm:
implementation and theory," in Numerical analysis, ed: Springer,
1978, pp. 105-116.

[14] J. B. Kuipers, Quaternions and rotation sequences: Princeton
university press Princeton, NJ, USA:, 1999.

[15] B. K. P. Horn, "Closed-form solution of absolute orientation
using unit quaternions," JOSA A, vol. 4, pp. 629-642, 1987.

[16] J. Diebel, "Representing attitude: Euler angles, unit quaternions,
and rotation vectors," Matrix, 2006.

[17] O. Faugeras, Three-dimensional computer vision: a geometric
viewpoint: the MIT Press, 1993.

[18] B. Wah and Z. Wu, "The theory of discrete Lagrange multipliers
for nonlinear discrete optimization," 1999, pp. 28-42.

[19] S. Thrun, et al., Probabilistic robotics vol. 1: MIT press
Cambridge, 2005.

[20] G. Qian, et al., "Robust structure from motion estimation using
inertial data," JOSA A, vol. 18, pp. 2982-2997, 2001.

[21] M. Lourakis and A. A. Argyros, "Is Levenberg-Marquardt the
most efficient optimization algorithm for implementing bundle
adjustment?," 2005, pp. 1526-1531 Vol. 2.

[22] A. W. Fitzgibbon, "Robust registration of 2D and 3D point sets,"
Image and Vision Computing, vol. 21, pp. 1145-1153, 2003.

[23] P. J. Neugebauer and K. Klein, "Texturing 3d models of real
world objects from multiple unregistered photographic views," in
Computer Graphics Forum, 1999, pp. 245-256.

[24] F. M. Mirzaei and S. I. Roumeliotis, "A Kalman filter-based
algorithm for IMU-camera calibration: Observability analysis and
performance evaluation," Robotics, IEEE Transactions on, vol.
24, pp. 1143-1156, 2008.

