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Abstract 
 

The problem of orientation parameterization for applications in computer vision and robotics is examined in detail herein. 
The necessary intuition and formulas are provided for direct practical use in any existing algorithm that seeks to 
minimize a cost function in an iterative fashion. Two distinct schemes of parameterization are analyzed: The first scheme 
concerns the traditional axis-angle approach, while the second employs stereographic projection from unit quaternion 
sphere to the 3D real projective space. Performance measurements are taken and a comparison is made between the two 
approaches. Results suggests that there exist several benefits in the use of stereographic projection that include rational 
expressions in the rotation matrix derivatives, improved accuracy, robustness to random starting points and accelerated 
convergence. 
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1. Introduction 
 
Many tasks in the fields of computer vision, robotics, 
computer graphics and animation require the estimation of 
rotation matrices in the context of the implementation of 
algorithms involving optimization of cost functions with 
non-linear derivatives. A very typical example of such an 
optimization in computer graphics based animation is the 
interpolation or key-framing of a sequence of poses[1]. In 
robotics and computer vision, parameterization of rotation 
matrices is typically met in applications concerning structure 
from motion[2], camera calibration[3] or generally, 
stochastic processes which require linearization of non-
linear relationships in order to propagate variance through 
time and optimize the estimates of hidden states with respect 
to measurements[4, 5]. 
 A 3D rotation matrix has 9 elements, but only 3 degrees 
of freedom (DOF); hence the need to employ minimal 
parameterization during optimization naturally arises.  
Typical parameterization schemes are Euler angles and the 
axis-angle parameters[6]. Using Euler angles to parameterize 
a rotation matrix is generally convenient, mainly in terms of 
the computations required to obtain the Jacobian, but this 
scheme generally suffers from inherent ambiguities, since 
the rotation can be represented in more ways than one. A 
special class of singularities occurring with the use of Euler 
angle is well known as gimbal locks[7], which can be 
algebraically interpreted as the loss of one degree of freedom 
in the rotation matrix. In practice, they can be loosely 
thought of as a loss of orientation. The ambiguities that 
come with the Euler angle representation, although not very 
frequent, are nevertheless distinctively possible; hence, they 

motivate the search for more robust alternative 
representations. The unit quaternion representation is 
arguably one of them. 
 The following sections focus on the representation of 
rotation matrices with quaternions and two different 
approaches of parameterization are introduced: The first 
approach (section 5) concerns the traditional axis-angle 
scheme [8]. The second (section 6) takes advantage of the 
homeomorphic relation between the 4D unit sphere and the 
3D projective space into providing a rational expression for 
the derivatives of the rotation matrix, as opposed to the axis-
angle method, which imposes the presence of irrational 
functions in the corresponding expressions. The idea of 
thinking of unit quaternions as back-projections of 3D points 
on a hyperplane is not new [9, 10], yet it has generally 
received little attention in literature related to iterative 
optimization in robotics and computer vision. In addition to 
formulas and derivations, performance comparison between 
the two methods in the context of steepest descent[11] and 
Levenberg – Marquardt (LM) [12, 13] executions for 
randomly generated rotation matrices are presented. 
 
 
2. Quaternions: A quick walkthrough 
 
The number system of quaternions is an extension of 
complex numbers and was first introduced by Rowan 
Hamilton in 1843. The algebra of quaternions is equipped 
with addition and multiplication which is generally non-
commutative. The set of quaternions is equal to ℝ!  and 
usually is denoted with H. In fact, quaternions can be 
represented as 4-dimensional vectors. The set of quaternions 
includes the imaginary elements i, j and k, which, together 
with the real number 1, form the set of basis elements, such 
as: 
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𝑖! = 𝑗! = 𝑘! = 𝑖𝑗𝑘 = −1 
 
 From the above, it can be easily seen that multiplication 
of the basis elements is not generally commutative. 
Specifically,  
 
𝑖𝑗 = 𝑘      𝑎𝑛𝑑  𝑗𝑖 =   −𝑘      , 𝑗𝑘 = 𝑖     
𝑎𝑛𝑑    𝑘𝑗 = −𝑖  ,        𝑘𝑖 = 𝑗    𝑎𝑛𝑑  𝑖𝑘 =   −𝑗 
 
 Using the basis elements and for any𝑞!, 𝑞!, 𝑞!, 𝑞! ∈ ℝ, 
one may obtain the general form of a quaternion q as: 
 
𝒒 = 𝑞! + 𝑖𝑞! + 𝑗𝑞! + 𝑘𝑞! 
 
 It follows that q can also be denoted as a 4D vector, or a 
4-tuple: 
 

𝒒 =

𝑞!
𝑞!
𝑞!
𝑞!

= 𝑞!
𝒗                               𝑜𝑟, 

 
𝒒 = 𝑞!, 𝑞!, 𝑞!, 𝑞! = 𝑞!,𝒗  
where 𝒗 = 𝑞! 𝑞! 𝑞! !  is the vector containing the 
imaginary parts and q0 the scalar part of the quaternion.   
 
2.1 Addition and multiplication 
Quaternion addition and multiplication is a straightforward 
generalization of the multiplication of complex numbers 
using all four basis elements (1, i, j, k). Hence, for any two 
quaternions 𝒒 = 𝑞! 𝒗  and 𝒓 = 𝑟! 𝒖 , the 
corresponding sum and product are given as follows: 
 
𝒒 + 𝒓 = 𝑞! + 𝑟!,𝒗 + 𝒖    (1) 

𝒒𝒓 = (𝑞!𝑟! −   𝒗 ∙ 𝒖,𝒗×𝒖 + 𝑞!𝒖 + 𝑟!𝒗)   (2) 

 
 The quaternion product qr can also be conveniently 
written in matrix form: 
 

𝒒𝒓 =

𝑞! −𝑞! −𝑞! −𝑞!
𝑞! 𝑞! −𝑞! 𝑞!
𝑞! 𝑞! 𝑞! −𝑞!
𝑞! −𝑞! 𝑞! 𝑞!

𝒓 = 𝑸𝑟   (3) 

 
 The permuted rq product can also be written in matrix 
form using an expansion of q: 
 

𝒓𝒒 =

𝑞! −𝑞! −𝑞! −𝑞!
𝑞! 𝑞! 𝑞! −𝑞!
𝑞! −𝑞! 𝑞! 𝑞!
𝑞! 𝑞! −𝑞! 𝑞!

𝒓 = 𝑸∗𝑟     (4) 

 
 The 4x4 matrices 𝑸 and 𝑸∗ differ only in that the lower-
right-hand 3x3 (skew-symmetric) sub-matrix is transposed. 
 
2.2 Norm and conjugate 
Again, the concept of a conjugate quaternion comes as a 
natural extension of the conjugacy in complex numbers. 
Hence, the conjugate of q is, 
 
𝒒 = 𝑞!,−𝑞!,−𝑞!,−𝑞! = (𝑞!,−𝒗) 

 
where 𝒒 = (𝑞!  , 𝑞!, 𝑞!, 𝑞!). 
 Accordingly, the norm 𝒒  of q, is given by: 
 
𝒒 = 𝒒𝒒 = 𝑞!! + 𝑞!! + 𝑞!! + 𝑞!! 

 
 From the above, the definition of the inverse quaternion 
𝒒!! follows naturally, as: 
 

𝒒!! =
𝒒
𝒒 ! 

 
 A very useful relationship between the product matrix 𝑸 
of q and the product matrix 𝑸 of the conjugate quaternion 𝑞 
can now be easily derived: 
 

𝑸 =

𝑞! 𝑞! 𝑞! 𝑞!
−𝑞! 𝑞! −𝑞! 𝑞!
−𝑞! 𝑞! 𝑞! −𝑞!
−𝑞! −𝑞! 𝑞! 𝑞!

= 𝑸! (5) 

 
 In quite the same way, it can be shown that 𝑸∗ = 𝑸∗!.  
 Finally, the useful property of the 4x4 product matrices 
𝑸 and 𝑸∗ that they are orthogonal if q is a unit quaternion 
(i.e., has a unit norm) is noted (without proof), as it will 
come handy in the following sections. 
 
2.3 The composite product between arbitrary 
quaternions and 3D vectors 
A quaternion can be generally thought of as a scalar and a 
vector. In this context, quaternions with a zero scalar part are 
representations of 3D vectors. We now define the composite 
product operator 𝐿𝒒 𝒓 :𝑯×ℝ! → ℝ! (acting on quaternions 
and 3D vectors) between the quaternion q and the vector r 
as:  
 

𝐿𝒒 𝒓 = 𝒒𝒓𝒒 = (𝑸𝒓)𝒒   (6) 

 
where 𝒒 = (𝑞!  , 𝑞!, 𝑞!, 𝑞!)  a general quaternion and 
𝒓 = (0  , 𝑟!, 𝑟!, 𝑟!)  a 3D vector represented as a purely 
imaginary quaternion.  
 It can be easily proven that the composite product maps 
purely imaginary quaternions onto the same set and that their 
norm remains unchanged. Moreover, using the matrices 𝑸 
and 𝑸  introduced in (3) and (4) regarding quaternion 
products, the composite product of (6) can be written as the 
following matrix product: 
 

𝐿𝒒 𝒓 = 𝒒𝒓𝒒!! = 𝑸𝒓 𝒒 = 𝑸∗ 𝑸𝒓 = (𝑸∗!𝑸)𝒓 (7) 

  
 The matrix product 𝑸∗!𝑸 of eq. (8) yields the following 
matrix: 
 
𝑸∗!𝑸

=

𝒒 ! 0 0 0
0 𝑞!! + 𝑞!! − 𝑞!! − 𝑞!! 2 𝑞!𝑞! − 𝑞!𝑞! 2(𝑞!𝑞! + 𝑞!𝑞!)
0 2(𝑞!𝑞! + 𝑞!𝑞!) 𝑞!! − 𝑞!! + 𝑞!! − 𝑞!! 2(𝑞!𝑞! − 𝑞!𝑞!)
0 2(𝑞!𝑞! − 𝑞!𝑞!) 2(𝑞!𝑞! + 𝑞!𝑞!) 𝑞!! − 𝑞!! − 𝑞!! + 𝑞!!

 
(8
) 
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2.4 Unit quaternions as representations of rotations 
The attention is now focused solely on unit quaternions. As 
stated in the end of sub-section 1.2, the 4x4 product matrices 
𝑸 and 𝑸∗ are orthogonal if q is a unit quaternion. Equation 
(7) implies that 𝑸∗!𝑸  should also be orthogonal. Most 
importantly, the 3x3 lower-right-hand sub-matrix R(q) of 
𝑸∗!𝑸, 
 

𝑹(𝑞) =
𝑞!! + 𝑞!! − 𝑞!! − 𝑞!! 2 𝑞!𝑞! − 𝑞!𝑞! 2(𝑞!𝑞! + 𝑞!𝑞!)

2(𝑞!𝑞! + 𝑞!𝑞!) 𝑞!! − 𝑞!! + 𝑞!! − 𝑞!! 2(𝑞!𝑞! − 𝑞!𝑞!)
2(𝑞!𝑞! − 𝑞!𝑞!) 2(𝑞!𝑞! + 𝑞!𝑞!) 𝑞!! − 𝑞!! − 𝑞!! + 𝑞!!

 (9) 

is also an orthogonal matrix. In fact, to motivate the 
following parameterization, R(q) is a rotation matrix. 
 If a quaternion q has 𝒒 = 1 (i.e., unity norm), then this 
intuitively implies (as in the case of complex numbers) that 
there exists an angle θ such as: 
 
𝒒 = 𝑞!! + 𝒗 !      𝑠. 𝑡. :     𝑐𝑜𝑠!𝜃 = 𝑞!!    𝑎𝑛𝑑    𝑠𝑖𝑛!𝜃

= 𝒗 !                       
 
 From the above, the rotation matrix R(q) can be 
parameterized in terms of θ and v. This practically means 
that vector v effectively defines an axis about which we 
rotate the 3D vector r (the direction of the rotation is 
determined by the direction of the axis vector using the 
right-hand-thumb rule). The latter can be formalized with the 
following theorem [14]: 
 
Theorem 2.1: For any unit quaternion 
𝒒 = 𝑐𝑜𝑠 !

!
, 𝑠𝑖𝑛 !

!
𝒗    ,𝒗 ∈ ℝ! and for any vector  𝒓 ∈ ℝ!  the 

action of the operator, 𝐿𝒒 𝒓 = 𝒒𝒓𝒒  is equivalent to a 
rotation about the axis and direction of q (following the 
right-hand-thumb rule) by an angle θ. 
 
3. Obtaining a unit quaternion from a rotation matrix 
The matrix in (9) provides a straightforward formula for the 
conversion between the quaternion form and the 
corresponding rotation matrix. The reverse process is 
somewhat more complicated due to the inherent ambiguity 
in the squared terms contained in the diagonal of R(q). This 
ambiguity however is eliminated in the course of the 
computations described in the following paragraphs.  
 Let 𝑹(𝒒) = 𝑟!"  be the given rotation matrix and 
𝒒 = (𝑞!, 𝑞!, 𝑞!, 𝑞!) the sought equivalent unit quaternion. By 
appropriately multiplying by +1 or -1 the diagonal elements 
of R(q) and then adding them together, the following 
relationships for 𝑞!!, 𝑞!!, 𝑞!!, 𝑞!! are obtained in terms of 
𝑟!!, 𝑟!!and 𝑟!! [15]: 
 

4𝑞!! = 1 + 𝑟!! + 𝑟!! + 𝑟!! (10) 
 

4𝑞!! = 1 + 𝑟!! − 𝑟!! − 𝑟!! (11) 
 

4𝑞!! = 1 − 𝑟!! + 𝑟!! − 𝑟!! (12) 
 

4𝑞!! = 1 − 𝑟!! − 𝑟!! + 𝑟!! (13) 
 

 
 Also, from the off-diagonal elements of R(q) the 
following relationships are obtained with similar processing 
of the element pairs (𝑟!", 𝑟!") , (𝑟!", 𝑟!") , (𝑟!", 𝑟!") : 
 

4𝑞!𝑞! = 𝑟!" − 𝑟!" (14) 
 

4𝑞!𝑞! = 𝑟!" − 𝑟!" (15) 
 

4𝑞!𝑞! = 𝑟!" − 𝑟!" (16) 
 

4𝑞!𝑞! = 𝑟!" + 𝑟!" (17) 
 

4𝑞!𝑞! = 𝑟!" + 𝑟!" (18) 
 

4𝑞!𝑞! = 𝑟!" + 𝑟!" (19) 
 

 Equations (10), (11), (12), (13) are the starting point of 
the conversion, since one of them will provide the solution 
for any one of the components of the quaternion. Each of 
these equations will have real solution, which, zero 
excluded, corresponds to a negative and a positive number 
that share the same absolute value. However, the negative 
solution is discarded due to the fact that the angle of rotation 
in quaternions cannot exceed π, since any angle greater than 
that will be subsumed into the rotation axis vector as a 
change of direction and not on the angle itself, which will 
fold back in the region 0,𝜋 . In other words, if all the 
components of a unit quaternion are negated, then the 
resulting quaternion will represent the original rotation 
matrix. This means that we are free to choose the sign 
(typically positive) of the quaternion component obtained by 
one of equations (10-13). 

From the above, we may arbitrarily pick a non-
trivial equation out of (10-13) and solve for the rest of the 
components using (14-19). For reasons of numerical 
stability, it is prudent to choose the greatest solution. Taking 
each of equations (10-13) and solving for the rest of the 
quaternion components using the appropriate subset of (14-
19) yields the following four possible forms of the solution 
(i.e., based on the solution for 𝑞!, 𝑞!, 𝑞!, 𝑞! respectively): 

𝒒𝑹 ! (𝑹) =
1
2

1 + 𝑟!! + 𝑟!! + 𝑟!!
𝑟!" − 𝑟!"

1 + 𝑟!! + 𝑟!! + 𝑟!!
𝑟!" − 𝑟!"

1 + 𝑟!! + 𝑟!! + 𝑟!!
𝑟!" − 𝑟!"

1 + 𝑟!! + 𝑟!! + 𝑟!!

 (20) 

𝒒𝑹 ! 𝑹 =
1
2

𝑟!" − 𝑟!"
1 + 𝑟!! − 𝑟!! − 𝑟!!

1 + 𝑟!! − 𝑟!! − 𝑟!!
𝑟!" + 𝑟!"

1 + 𝑟!! − 𝑟!! − 𝑟!!
𝑟!" + 𝑟!"

1 + 𝑟!! − 𝑟!! − 𝑟!!

   (21) 
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𝒒𝑹 ! (𝑹) =
1
2

𝑟!" − 𝑟!"
1 − 𝑟!! + 𝑟!! − 𝑟!!

𝑟!" + 𝑟!"
1 − 𝑟!! + 𝑟!! − 𝑟!!

1 − 𝑟!! + 𝑟!! − 𝑟!!
𝑟!" + 𝑟!"

1 − 𝑟!! + 𝑟!! − 𝑟!!

 (22) 

𝒒𝑹 ! (𝑹) =
1
2

𝑟!" − 𝑟!"
1 − 𝑟!! − 𝑟!! + 𝑟!!

𝑟!" + 𝑟!"
1 − 𝑟!! − 𝑟!! + 𝑟!!

𝑟!" + 𝑟!"
1 − 𝑟!! − 𝑟!! + 𝑟!!

1 − 𝑟!! − 𝑟!! + 𝑟!!

 (23) 

 To choose which solution is the most suitable (with 
respect to using the greatest component solution as starting 
point) we consider 𝒒𝑹 to be a function 𝒒𝑹 𝑹 : 𝑆𝑂(3) → 𝑯 
that maps a rotation matrix to one of the quaternions given 
by (20), (21), (22), (23) depending on certain conditions 
involving the elements of the diagonal of R. We may use 𝒒𝑹 
to implement a simple routine that converts a rotation matrix 
to a quaternion [16]:  

𝒒𝑹 𝑹 =

𝒒𝑹 ! 𝑹     , 𝑖𝑓    𝑟!! ≥ −𝑟!!    ,      𝑟!! ≥ −𝑟!!      ,   𝑟!! ≥ −𝑟!!  
𝒒𝑹 ! 𝑹     , 𝑖𝑓    𝑟!! ≤ −𝑟!!    ,      𝑟!! ≥ 𝑟!!          ,       𝑟!! ≥   𝑟!!
𝒒𝑹 ! 𝑹     , 𝑖𝑓    𝑟!! ≥ 𝑟!!          ,        𝑟!! ≤ 𝑟!!              , 𝑟!! ≤ −𝑟!!
𝒒𝑹 ! 𝑹     , 𝑖𝑓    𝑟!! ≤ 𝑟!!          ,        𝑟!! ≤ −𝑟!!            , 𝑟!! ≤   𝑟!!

 (24) 

 
 For the sake of completeness, the derivation for the set of 
inequalities that must hold in order for 𝒒𝑹 ! 𝑹  to be the 
preferred solution is shown: 
 Assume that for some rotation matrix, we solve 
equations (10-13) and find that 𝑞! =

!
!

1 + 𝑟!! − 𝑟!! − 𝑟!! 
is the greatest component. The following inequalities will 
ther efore be true: 
 
𝑞! ≥ 𝑞! ⇒ 1 + 𝑟!! − 𝑟!! − 𝑟!!

≥ 1 + 𝑟!! + 𝑟!! + 𝑟!! 
 

⇔   𝑟!! ≤ −𝑟!! 
(25) 

 
 

𝑞! ≥ 𝑞! ⇒ 1 + 𝑟!! − 𝑟!! − 𝑟!!
≥ 1 − 𝑟!! + 𝑟!! − 𝑟!! 

 

⇔ 𝑟!! ≥ 𝑟!! (26) 
 

𝑞! ≥ 𝑞! ⇒ 1 + 𝑟!! − 𝑟!! − 𝑟!!
≥ 1 − 𝑟!! − 𝑟!! + 𝑟!! 

 

⇔ 𝑟!! ≥ 𝑟!! (27) 

 
 The inequalities found in (25-27) are indeed the ones that 
should hold if 𝒒𝑹 ! 𝑹  is chosen. The derivation of the 
other 3 conditions is analogous. 
 

 
4. Axis –Angle parameterization 
Any rotation is equivalent to a rotation about one axis by an 
angle θ. In the axis-angle representation, if n is some vector 
on the direction of the axis about which the rotation takes 
place, then this vector completely represents the given 
rotation, if 𝒏 = 𝜃. In other words, in order to fully specify 
a rotation, only an angle θ and a direction vector 𝒏 =
𝑛! 𝑛! 𝑛! !  about which the rotation takes place are 

required; and since one is free to choose the length of this 
vector, it would be reasonable to make it so that this length 
encodes the angle of the rotation, θ. Simply put, the axis-
angle representation is nothing but a very compact encoding 
of a rotation with 3 DOF using the 3 components 𝑛!, 𝑛!, 𝑛! 
of the vector that defines the rotation in a way such that: 
 

𝑛!! + 𝑛!! + 𝑛!! = 𝜃 (28) 

 
where 𝜃 ∈ 0,𝜋 . 
 To obtain the rotation matrix from some given axis-angle 
representation, one may simply employ the formula of 
Rodrigues [17]: 
 

𝑹 = 𝑰𝟑 +
𝑠𝑖𝑛𝜃
𝜃 𝒏 𝒙 +

1 − 𝑐𝑜𝑠𝜃
𝜃! 𝒏𝒏! − 𝑰𝟑  (29) 

 
where the direction of the rotation is defined by the direction 
of n using the right-hand-thumb rule, I3 is the 3x3 unity 
matrix and 𝒏 𝒙 is the cross-product skew symmetric matrix: 
 

𝒏 𝒙 =
0 −𝑛! 𝑛!
𝑛! 0 −𝑛!
−𝑛! 𝑛! 0

 

 
 The rotation is already axis-angle parameterized in (29) 
and one could argue against whether it is necessary to use 
quarternions in order to obtain the derivatives of R, since 
one can simply work directly on Rodrigues’ formula. As it 
turns out, obtaining the axis-angle parameterized quaternion 
offers the advantage of putting things somewhat into 
perspective by using the chain rule for derivation on the 
quaternion and generally improving an, otherwise, very long 
and painful series of computations. 
 
 
5. Representing orientation with unit quaternions 
 
The quaternion representation of a rotation shown in (9) is 
convenient and can be generally manipulated easily inside 
expressions. Moreover, it ensures that ambiguous 
configurations such as gimbal locks will not occur. 
However, this representation does not constrain the 
quaternion components to yield a unit norm. There is an 
extra degree of freedom (for a total of 4 DOF) to accounted 
for while the rotation parameters are being estimated 
throughout iterative optimization algorithms. It is therefore 
necessary to resort to a method of enforcing the unit-norm 
constraint during optimization, such as Lagrange multipliers 
[18]; alternatively, it is preferable to parameterize the 
quaternion in a way such that the number of DOF of the 
representation drop down to 3. 
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5.1 Unit quaternions using the axis-angle 
parameterization 
To achieve the minimum number of DOF (i.e., 3), it is 
necessary to revert back to the axis-angle encoding, this time 
using the following quaternion parameterization: 
 

𝒒 = 𝑐𝑜𝑠
𝜐
2 , 𝑠𝑖𝑛

𝜐
2
𝑢!
𝜐 ,
𝑢!
𝜐 ,

𝑢!  
𝜐  (20) 

 
where 𝒖 = 𝑢! 𝑢! 𝑢! !  is the rotation axis vector and  
𝜐 = 𝑢!! + 𝑢!! + 𝑢!!  is the norm of u. The degrees of 
freedom of q have now dropped to 3. 

 
5.2 Obtaining the derivatives of the rotation matrix with 
respect to the axis-angle vector 
 Perhaps the most important entity in iterative non-linear 
optimization is the matrix of partial derivatives of the 
objective function, otherwise known as the Jacobian. It is 
therefore necessary (or preferred) to obtain analytical 
expressions of the derivatives of the rotation matrix with 
respect to the axis vector u. The general idea behind the 
derivation is to obtain the partial derivatives of the rotation 
matrix with respect to 𝑞!, 𝑞!, 𝑞!, 𝑞!  and the partial 
derivatives of 𝑞!(𝒖), 𝑞!(𝒖), 𝑞! 𝒖 , 𝑞!(𝒖) with respect to u 
and apply the chain rule to reach the sought result.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Specifically, the derivatives of R(q) with respect to u are given by: 
 
 
𝜕𝑹(𝒒(𝒖))

𝜕𝑢!
=

𝜕𝑹(𝒒)
𝜕𝑞!

!

!!!

𝜕𝑞!(𝒖)
𝜕𝑢!

 

(31) 

  
 A series of steps that leads to the calculation of the 
partial derivatives of a rotation matrix, given that the axis-
angle vector u is provided, will now be described: 
 In the first step the corresponding quaternion is 
calculated as follows: 
 

𝜕𝒒(𝒖)
𝜕𝑢!

=

−
𝑢!𝑠𝑖𝑛

𝜐
2

2𝜐
𝑠𝑖𝑛 𝜐2
𝜐 +

𝑢!!𝑐𝑜𝑠
𝜐
2

2𝜐! −
𝑢!!𝑠𝑖𝑛

𝜐
2

𝜐!

𝑢!𝑢!
𝑐𝑜𝑠 𝜐2
2𝜐!

−
𝑠𝑖𝑛 𝜐2
𝜐!

𝑢!𝑢!
𝑐𝑜𝑠 𝜐2
2𝜐! −

𝑠𝑖𝑛 𝜐2
𝜐!

=
1
2𝜐!

−𝜐!𝑢!𝑠𝑖𝑛
𝜐
2

2 𝑢!! + 𝑢!! 𝑠𝑖𝑛
𝜐
2 + 𝑢!

!𝜐𝑐𝑜𝑠
𝜐
2

𝑢!𝑢! 𝜐𝑐𝑜𝑠
𝜐
2 − 2𝑠𝑖𝑛

𝜐
2

𝑢!𝑢! 𝜐𝑐𝑜𝑠
𝜐
2 − 2𝑠𝑖𝑛

𝜐
2

   (38) 

𝜕𝒒(𝒖)
𝜕𝑢!

=

−
𝑢!𝑠𝑖𝑛

𝜐
2

2𝜐

𝑢!𝑢!
𝑐𝑜𝑠 𝜐2
2𝜐!

−
𝑠𝑖𝑛 𝜐2
𝜐!

𝑠𝑖𝑛 𝜐2
𝜐 +

𝑢!!𝑐𝑜𝑠
𝜐
2

2𝜐! −
𝑢!!𝑠𝑖𝑛

𝜐
2

𝜐!

𝑢!𝑢!
𝑐𝑜𝑠 𝜐2
2𝜐! −

𝑠𝑖𝑛 𝜐2
𝜐!

=
1
2𝜐!

−𝜐!𝑢!𝑠𝑖𝑛
𝜐
2

𝑢!𝑢! 𝜐𝑐𝑜𝑠
𝜐
2 − 2𝑠𝑖𝑛

𝜐
2

2 𝑢!! + 𝑢!! 𝑠𝑖𝑛
𝜐
2 + 𝑢!

!𝜐𝑐𝑜𝑠
𝜐
2

𝑢!𝑢! 𝜐𝑐𝑜𝑠
𝜐
2 − 2𝑠𝑖𝑛

𝜐
2

 (39) 

𝜕𝒒(𝒖)
𝜕𝑢!

=

−
𝑢!𝑠𝑖𝑛

𝜐
2

2𝜐

𝑢!𝑢!
𝑐𝑜𝑠 𝜐2
2𝜐!

−
𝑠𝑖𝑛 𝜐2
𝜐!

𝑢!𝑢!
𝑐𝑜𝑠 𝜐2
2𝜐! −

𝑠𝑖𝑛 𝜐2
𝜐!

𝑠𝑖𝑛 𝜐2
𝜐

+
𝑢!!𝑐𝑜𝑠

𝜐
2

2𝜐!
−
𝑢!!𝑠𝑖𝑛

𝜐
2

𝜐!

=
1
2𝜐!

−𝜐!𝑢!𝑠𝑖𝑛
𝜐
2

𝑢!𝑢! 𝜐𝑐𝑜𝑠
𝜐
2 − 2𝑠𝑖𝑛

𝜐
2

𝑢!𝑢! 𝜐𝑐𝑜𝑠
𝜐
2 − 2𝑠𝑖𝑛

𝜐
2

2 𝑢!! + 𝑢!! 𝑠𝑖𝑛
𝜐
2 + 𝑢!

!𝜐𝑐𝑜𝑠
𝜐
2

 (40) 
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𝒒 = 𝑐𝑜𝑠
𝜐
2 𝑠𝑖𝑛

𝜐
2
𝑢!
𝜐 𝑠𝑖𝑛

𝜐
2
𝑢!
𝜐 𝑖𝑛

𝜐
2
𝑢!
𝜐  (32) 

  

where 𝜐 is the norm of the vector u that encodes angle and 
axis, such that, 𝜐 = 𝑢!! + 𝑢!! + 𝑢!!. 
 Obtaining u from q is fairly straightforward, given that 
𝜐 ∈ 0,𝜋 ; we obtain  𝜐 = 2𝑎𝑐𝑜𝑠𝑞!  and thereafter, 
𝒖 = !!"#$!!

!"# !"#$!!
𝑞! 𝑞! 𝑞! !. 

 Let now 𝑭𝒋 =
!𝑹(𝒒)
!!!

  be the matrix of partial derivatives 

of the rotation with respect to the quaternion components 
𝑞! , 𝑗 = 0, 1, 2, 3. The derivatives can be easily calculated as 
follows: 

 

𝑭𝟎 =
𝜕𝑹(𝒒)
𝜕𝑞!

= 2
𝑞! −𝑞! 𝑞!
𝑞! 𝑞! −𝑞!
−𝑞! 𝑞! 𝑞!

 (33) 
 

 

𝑭𝟏 =
𝜕𝑹(𝒒)
𝜕𝑞!

= 2
𝑞! 𝑞! 𝑞!
𝑞! −𝑞! −𝑞!
𝑞! 𝑞! −𝑞!

 (34) 

 

𝑭𝟐 =
𝜕𝑹(𝒒)
𝜕𝑞!

= 2
−𝑞! 𝑞! 𝑞!
𝑞! 𝑞! 𝑞!
−𝑞! 𝑞! −𝑞!

 (35) 

 

𝑭𝟑 =
𝜕𝑹(𝒒)
𝜕𝑞!

= 2
−𝑞! −𝑞! 𝑞!
𝑞! −𝑞! 𝑞!
𝑞! 𝑞! 𝑞!

 (36) 

 
 At the next step the partial derivatives of the components 
of the quaternion with respect to the axis-angle vector u are 
computed: 
 

𝑮 𝒖 =
𝜕𝒒(𝒖)
𝜕𝒖 =

𝜕𝒒(𝒖)
𝜕𝑢!

𝜕𝒒(𝒖)
𝜕𝑢!

𝜕𝒒(𝒖)
𝜕𝑢!

 (37) 

 
 The columns of G(u) are given below in terms of u1, u2, 
u3 and υ: 
 The last step trivially involves the substitution of the 
results obtained with (33)-(40) in (31). Specifically, by 
adopting the convention 𝑮 𝒖 = 𝑔!" , the 3 partial 
derivatives of the rotation matrix with respect to u are given 
by the following: 
 

𝜕𝑹(𝒒(𝒖))
𝜕𝑢!

=
𝜕𝑹(𝒒)
𝜕𝑞!

!

!!!

𝜕𝑞!(𝒖)
𝜕𝑢!

= 𝑭𝒋𝑔!"

!

!!!

 (41) 

 
 

 
6. A rational parameterization using stereographic 

projection 
 
The axis-angle parameterization presented in section 5 uses 
the minimum number of 3 DOF required to specify a 
rotation and it can be computed in a straightforward manner. 
However, the derivatives of the rotation matrix in (38), (39), 
(40) contain expressions in which irrational functions 

(sinusoids) are present. The latter implies that, in the course 
of computations, these functions will certainly inflict a 
certain amount of approximations to the final result thereby 
deteriorating its numerical accuracy. Hence, a rational 
parameterization, if possible, is always superior to one that 
makes use of irrational functions. It is possible to achieve 
such a parameterization by considering a homeomorphism 
from ℝ! to the 4D unit sphere. 
 
6.1 Projecting a 3D point on the 4D hypersphere 
Unit quaternions can be considered as a hypersphere in 4D 
space defined by the following equation in terms of q0, q1, 
q2, q3: 

𝑞!! + 𝑞!! + 𝑞!! + 𝑞!! = 1            (42) (42) 

 Let now 𝑺 ≡ (0, 0, 0,−1) be the “south pole” of this 4D 
sphere and also let π be the 3D equatorial hyperplane 
containing the origin of  ℝ! as shown in figure 1. Let now 
r(t) be the ray from S that passes through any point (𝑥, 𝑦, 𝑧) 
of the equatorial plane, parameterized by t (Note that 
parentheses are used to denote points, while square brackets 
are used for vectors): 
 

𝑟 𝑡 = 0, 0, 0,−1 + 𝑡 𝑥 𝑦 𝑧 1 ! (43) 

 The ray intersects the surface of the sphere at P. Point P 
is therefore back-projected on π through the ray. 

 
Fig. 1. The 4D spherical hypersurface of unit quaternions visualized as 
a 3D sphere. Point S is the center of projection and (x, y, z) a point on 
the 3D hyperplane. The ray r(t) intersects the surface of the sphere at P. 
Since P lies on the sphere, its coordinates should verify (42). 
Moreover, it also lies on the ray, therefore substituting (43) 
in (42) yields, 
 
𝑡𝑥 ! + 𝑡𝑦 ! + 𝑡𝑧 ! + 𝑡 − 1 ! = 1 

 
which provides the following non-trivial solution for t in 
terms of x, y, z: 
 

𝑡 =
2

𝑥! + 𝑦! + 𝑧! + 1 (44) 

 
 Finally, substituting (44) into (43), one obtains the 
coordinates of a unit quaternion in x-y-z parameters: 
 

𝒒 =
2𝑥

𝛼! + 1    ,
2𝑦

𝛼! + 1 ,
2𝑧

𝛼! + 1 ,
1 − 𝛼!

𝛼! + 1  (45) 

 
where 𝛼! = 𝑥! + 𝑦! + 𝑧!. 

 

 

 

 

  
π 

r(t

P 
(x,	  y,	  

S 
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 It is worth noting here that, in order to express the center 
of projection in terms of the stereographic parameters, one 
needs to include “infinite” values for the parameters x, y, z. 
This means that the quaternion  0  ,0,0,−1  cannot be 
expressed with real values of the stereographic projection 
parameters. In practice however, one may use very big 
values for x, y and z and get a very close approximation of 
the quaternion. It turns out, as shown in the results, that the 
stereographic projection parameters are stable and converge 
fast, even for tolerance below 10-9. The tradeoff to pay here 
is the very high values for the parameter vector; however, as 
shown later, these values are well within representation 
range. 
 

6.2 Finding the back-projection of a quaternion on the 
equatorial plane 

Given a point 𝝍 = (𝑥, 𝑦, 𝑧), the coordinates 𝑞!, 𝑞!, 𝑞!, 𝑞! of 
the quaternion can be calculated straight off (45). The 
opposite conversion is equally straightforward, without 
many computations involved. 
 Let 𝑞!, 𝑞!, 𝑞!, 𝑞!  a given unit quaternion. As a first 
step, one should calculate α: 
 

𝛼! =
1 − 𝑞!
𝑞! + 1

 (46) 

 
 Therefore, the x, y, z coordinates of the quaternion’s 
back-projection on the equatorial plane can be easily 
calculated as follows: 
 
𝝍 = 𝑥, 𝑦, 𝑧

=
𝑞!(𝛼! + 1)

2 ,
𝑞!(𝛼! + 1)

2 ,
𝑞!(𝛼! + 1)

2                   

⇔       𝝍 =
𝑞!

1 + 𝑞!
,
𝑞!

1 + 𝑞!
,
𝑞!

1 + 𝑞!
 

(47) 
 
 
 

 
6.3 Rotation matrix derivatives with respect to equatorial 

plane point coordinates  
The process of finding the derivatives of the rotation matrix 
R(q) is directly analogous to the one described in section 
5.2. The only difference has to do with the partial derivatives 
of the quaternion with respect to the point 𝝍: 
 

𝑯 𝝍 =
𝜕𝒒(𝝍)
𝜕𝝍 =

𝜕𝒒(𝝍)
𝜕𝑥

𝜕𝒒(𝝍)
𝜕𝑦

𝜕𝒒(𝝍)
𝜕𝑧

 (48) 

where, 

𝜕𝒒(𝝍)
𝜕𝑥 =

2
𝑎! + 1 −

4𝑥!

(𝑎! + 1)!

−
4𝑥𝑦

𝑎! + 1 !

−
4𝑥𝑧

𝑎! + 1 !

−4𝑥
𝑎! + 1 !

  

= −
4

(𝑎! + 1)!

2𝑥! − 𝑎! + 1
2
𝑥𝑦
𝑥𝑧
𝑥

 

(49) 

 

 

𝜕𝒒(𝝍)
𝜕𝑦 =

−
4𝑥𝑦

(𝑎! + 1)!
2

𝑎! + 1
−

4𝑦!

𝑎! + 1 !

−
4𝑦𝑧

𝑎! + 1 !

−4𝑦
𝑎! + 1 !

= −
4

(𝑎! + 1)!

𝑦𝑥
2𝑦! − 𝑎! + 1

2
𝑦𝑧
𝑦

 

(50) 

 

 

𝜕𝒒(𝝍)
𝜕𝑧 =

−
4𝑥𝑧

(𝑎! + 1)!

−
4𝑦𝑧

𝑎! + 1 !

2
𝑎! + 1 −

4𝑧!

𝑎! + 1 !

−4𝑧
𝑎! + 1 !

= −
4

(𝑎! + 1)!

𝑧𝑥
𝑧𝑦

2𝑧! − 𝑎! + 1
2
𝑧

 

(51) 

 
 Finally, the derivatives of the rotation matrix can be 
calculated using the matrices 𝑭𝟎,𝑭𝟏,𝑭𝟐,𝑭𝟑  calculated in 
(33), (34), (35), (36): 
 

𝜕𝑹(𝒒(𝝍))
𝜕𝑥 =

𝜕𝑹(𝒒)
𝜕𝑞!

!

!!!

𝜕𝑞!(𝝍)
𝜕𝑥 = 𝑭𝒋

!

!!!

𝜕𝑞!(𝝍)
𝜕𝑥  (52) 

 
𝜕𝑹(𝒒(𝝍))

𝜕𝑦 =
𝜕𝑹(𝒒)
𝜕𝑞!

!

!!!

𝜕𝑞!(𝝍)
𝜕𝑦 = 𝑭𝒋

!

!!!

𝜕𝑞!(𝝍)
𝜕𝑦  (53) 

 
𝜕𝑹(𝒒(𝝍))

𝜕𝑧 =
𝜕𝑹(𝒒)
𝜕𝑞!

!

!!!

𝜕𝑞!(𝝍)
𝜕𝑧 = 𝑭𝒋

!

!!!

𝜕𝑞!(𝝍)
𝜕𝑧  (54) 

 
 Similarly to (41), and using (33)-(36), we obtain the 
derivative of 𝑅(𝜓) as follows: 
 
𝜕𝑹(𝒒(𝝍))

𝜕𝜓!
=

𝜕𝑹(𝒒)
𝜕𝑞!

!

!!!

𝜕𝑞!(𝝍)
𝜕𝜓!

= 𝑭𝒋ℎ!"

!

!!!

 (55) 

 
where 𝜓!,𝜓!,𝜓! = 𝑥, 𝑦, 𝑧  and 𝑯 𝝍 = ℎ!" . 
 
6.4 Parameter differentiation and propagation of 

covariance 
Given the multiplicity of quaternion parameterizations, the 
need to differentiate the parameter set of one kind with 
respect to the equivalent parameters of another type will 
naturally arise, not only in the context of offline bundle 
adjustment, but also in online filtration algorithms involving 
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the estimation of position and orientation such as the 
Kalman filter in numerous applications in mobile 
robotics[19]. It is much too often convenient to represent a 
rotation directly by its three parameters in the state vector of 
a temporal model, thereby ensuring the unit normal 
constraint of the respective quaternion [20]. However, 
angular measurements are naturally related to the axis angle 
parameterization; therefore, the need to differentiate the 
stereographic projection parameters with respect to the axis 
vector components will rise at the stage in which the 
likelihood of a set of inertial measurements (gyro) will be 
incorporated to the filtration process. In general, one may 
choose to perform optimization with a specific type of 
parameters, yet find it convenient to propagate variance in 
terms of a different type of parameters. The most common 
method to propagate variance throughout non-linear 
relations would be to linearly approximate one set of 
parameters with another using the Taylor series. 
 The derivatives of the equatorial plane coordinates 
𝝍 = 𝑥, 𝑦, 𝑧  with respect to the quaternion q follow from 
the equations in (47): 
 

𝜕𝝍
𝜕𝒒 =

1
𝑞! + 1 !

𝑞! + 1 0 0 −𝑞!
0 𝑞! + 1 0 −𝑞!
0 0 𝑞! + 1 −𝑞!

 (56) 

 
 From equations (56) and (38-40) and by employing the 
chain rule, the derivatives of the stereographic projection 
parameters 𝝍 = (𝑥, 𝑦, 𝑧)  with respect to the axis-angle 
parameters 𝒖 = 𝑢!, 𝑢!, 𝑢!  can be computed as follows: 
 

𝜕𝝍
𝜕𝒖 =

𝜕𝝍
𝜕𝒒

𝜕𝒒
𝜕𝑢!

𝜕𝒒
𝜕𝑢!

𝜕𝒒
𝜕𝑢!

=
𝜕𝝍
𝜕𝒒

𝜕𝒒
𝜕𝒖 (57) 

 In order to obtain the derivative of axis-angle parameters 
with respect to stereographic projection parameters, it is first 
necessary to compute !!

!"
: 

 
𝜕𝒖
𝜕𝒒

=

2𝑞!
1 − 𝑞!!

+
2𝑞!𝑞! cos!! 𝑞!
1 − 𝑞!! !/!

2 cos!! 𝑞!
1 − 𝑞!! !/! 0 0

2𝑞!
1 − 𝑞!!

+
2𝑞!𝑞! cos!! 𝑞!
1 − 𝑞!! !/! 0

2 cos!! 𝑞!
1 − 𝑞!! !/! 0

2𝑞!
1 − 𝑞!!

+
2𝑞!𝑞! cos!! 𝑞!
1 − 𝑞!! !/! 0 0

2 cos!! 𝑞!
1 − 𝑞!! !/!

 

(58
) 

 
 Once again, from equations (56) and (48)-(50) and by 
employing the chain rule we obtain the derivative of u with 
respect to ψ: 
 
𝜕𝒖
𝜕𝝍 =

𝜕𝒖
𝜕𝒒

𝜕𝒒
𝜕𝑥

𝜕𝒒
𝜕𝑦

𝜕𝒒
𝜕𝑧

=
𝜕𝒖
𝜕𝒒

𝜕𝒒
𝜕𝝍 (59) 

 
 One can now propagate covariance from one set of 
parameters to another by employing the derivatives in (57) 
and (59). The covariance of u, let 𝜮𝒖, in terms of ψ is 
estimated as, 
 

𝜮𝒖 =
𝜕𝒖
𝜕𝝍𝜮𝝍

𝜕𝒖
𝜕𝝍

!

 (60) 

 
 And the covariance of ψ , let 𝜮𝝍, in terms of u is:.  

𝜮𝝍 =
𝜕𝝍
𝜕𝒖 𝜮𝒖

𝜕𝝍
𝜕𝒖

!

  
 

(61) 

 
 Another very typical case of variance propagation 
concerns incremental updates of the orientation quaternion 
through time in the context of a stochastic process. Using (3) 
and (4) the derivative of the quaternion product 𝒑 = 𝒘𝒒 in 
terms of the components of w is, !𝒘𝒒

!𝒘
= !𝑸∗𝒘

!𝒘
= 𝑸∗, whereas 

the derivative in terms of q is !𝒘𝒒
!𝒒

= !𝑾𝒒
!𝒒

=𝑾. Hence, the 
covariance of the product in terms of both factors can be 
estimated as follows: 
 

𝜮𝒑 =
𝜕𝒑
𝜕𝒘

𝜕𝒑
𝜕𝒒

𝜮𝒘𝒘 𝜮𝒘𝒒
𝜮𝒒𝒘 𝜮𝒒𝒒

𝜕𝒑
𝜕𝒘

!

𝜕𝒑
𝜕𝒒

!

= 𝑸∗𝜮𝒘𝒘 𝑸∗ ! +𝑾𝜮𝒒𝒘 𝑸∗ !

+ 𝑸∗𝜮𝒘𝒒𝑾! +𝑾𝜮𝒒𝒒𝑾! 

(62) 

 
where 𝜮𝒘𝒘, 𝜮𝒒𝒒, 𝜮𝒘𝒒 and 𝜮𝒒𝒘 are the four 4x4 sub-blocks of 
the covariance matrix of p. 
 In most cases, q and w will be independent, hence 
𝜮𝒘𝒒 = 𝜮𝒒𝒘 = 0 and the propagated variance becomes, 
 
𝜮𝒑 = 𝑸∗𝜮𝒘𝒘 𝑸∗ ! +𝑾𝜮𝒒𝒒𝑾! 
 
 

 

7. Numerical results 
 
Both techniques described in the previous sections were 
employed for various steepest (gradient) descent[11] and 
Levenberg-Marquardt[12] runs for randomly generated 
rotation matrices. Figure 2 illustrates the average gradient 
norm for both parameterizations over a period of 1000 
iterations using four different learning rate values (0.0003, 
0.0006, 0.001 and 0.01) during steepest descent. Figures 3 
and 4 show plots of the average number of iterations (to 
convergence) and achieved accuracy of the two 
aforementioned schemes in the context of the Levenberg – 
Marquardt algorithm. 
 
7.1 Steepest descent 
It is evident from the results that the stereographic projection 
parameter vector produces a very steep gradient; hence the 
oscillatory behavior for higher learning rates (Figure 2a).  
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  Fig. 2. The average gradient norm plots for a sequence of 10 steepest 
descent executions regarding the estimation of a randomly generated 
rotation matrix. a) Learning rate a=0.01, b) Learning rate a = 0.001, c) 
Learning rate a = 0.0006, d) Learning rate a = 0.003. 
 
 

 For the same learning rate, the axis-angle parameter 
vector introduces a very smooth and fast convergence. 
However, for lower learning rates (a=0.001, 0.0006, 0.0003), 
the stereographic parameter vector overshoots in the 
beginning (roughly until to the 40th iteration), but then it 
descents smoothly to zero, whereas the gradient of the axis-
angle parameter vector is significantly slowed down, to the 
point that, practically, for learning rates 0.0006 and 0.0003 
the process does not converge before the 1000th iteration. 
   The plots of Figure 2 demonstrate the average rate of 
convergence over the entire descent process, but they do not 
reveal the accuracy of the approximation following the 
1000th step, since they fail to visualize points that lie 
exponentially close to zero. Tables 1, 2 and 3 present the 
average error (Frobenius norm of the difference between the 
estimated rotation and the actual rotation) with regards to the 
two parameterization approaches for the four learning rates 
mentioned earlier (0.01, 0.001, 0.0003 and 0.0006) 
following 500, 1000 and 1500 iterations respectively. 
 
Table 1. The average error over ten steepest descents 
concerning a randomly generated rotation matrix after 500 
iterations for a = 0.01, 0.001, 0.0006, 0.0003. 

 500 iterations  
a 𝐸 𝑅!"! 𝑢 − 𝑅  𝐸 𝑅!"# 𝜓 − 𝑅  

0.01 0.0389 0.5958 
0.001 0.7812 0.3490 

0.0006 0.7146 0.0596 
0.0003 1.1679 0.1636 
 
 
Table 2. The average error over ten steepest descents 
concerning a randomly generated rotation matrix after 1000 
iterations for a = 0.01, 0.001, 0.0006, 0.0003. 

 1000 iterations 
a 𝐸 𝑅!"# 𝑢 − 𝑅  𝐸 𝑅!"# 𝜓 − 𝑅  

0.01 0.0013 0.3549 
0.001 0.0722 1.0276 x10-6 

0.0006 0.2583 6.9187x10-6 
0.0003 0.4918 0.0078 
  
Table 3. The average error over ten steepest descents 
concerning a randomly generated rotation matrix after 1500 
iterations for a = 0.01, 0.001, 0.0006, 0.0003. 
 

 1500 iterations 
a 𝐸 𝑅!"# 𝑢 − 𝑅  𝐸 𝑅!"# 𝜓 − 𝑅  

0.01 1.4828x10-15 0.1397 
0.001 0.1192 3.8231 x10-7 

0.0006 0.4449 5.3234 x10-7 
0.0003 0.2440 1.6585 x10-7 
  
 
 The magnitude of the error also suggests that the 
stereographic projection parameter vector yields a more 
aggressive gradient than the axis-angle parameters. The 
tradeoff for this steep gradient is the lack of stability for 
higher values of the learning rate, in which cases, the axis-
angle parameters converge fast with approximation errors of 
order of magnitude less than 10-16. On the other hand, for 
smaller learning rates (<0.001), the stereographic projection 
parameters converge much faster and the order of the error is 
roughly at 10-7.  
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7.2 Levenberg-Marquardt  
The Levenberg – Marquardt algorithm is one of the most 
preferred, if not the recommended method for orientation 
and position refinement in computer vision, robotics (bundle 
adjustment or iterative Kalman filter) and relative fields such 
as 3D graphics [21-24]. The algorithm uses an adaptive 
parameter to switch between gradient (steepest) descent  and 
Newton – Raphson[11] iteration in an adaptive manner 
which will guarantee convergence to a local minimum. 
Given that the problem is convex, then the method ideally 
should always reach the global minimum. 
 

 
Fig. 3. Performance comparison in the context of LM 
iteration with a fixed starting point for 20 error tolerance 
values (negative log scale). a) Plot of average number of 
steps (log scale) required to reach the preset tolerance. b) 
Plot of average error norm(log scale) following 
convergence. 
 
 
 Using the two parameterizations, a series of 5 LM 
executions were performed for 20 different error tolerance 
values using randomly generated rotation matrices and 
common starting points (a rotation matrix corresponding to 
π/4 about all three axes). For each set of executions, the 
average number of iterations to convergence and final error 
norm was recorded (Figure 3).  
 

 

 
Fig. 4. Performance comparison in the context of LM iteration with 
random starting point for 20 error tolerance values (negative log scale). 
a) Plot of average number of steps (log scale) required to reach the 
preset tolerance. b) Plot of average error norm (log scale) following 
convergence. 
 
 
 The results clearly suggest superiority of the 
stereographic projection over the axis-angle 
parameterization. In fact, the average number of iterations to 
convergence lies in the range of 6-39 steps, while the 
respective numbers for the axis-angle parameters range from 
11 to even 1887.5. In fact, with the stereographic 
parameters, lowering the error tolerance by 10 units in the 
negative log scale has practically no effect in the execution 
time. Moreover, as shown in Figure 3b, the achieved average 
error norm by the stereographic projection is typically equal 
to or less than the average achieved error norm by the axis-
angle parameters.  
   The same experimentation was repeated with random 
starting points (Figure 4). The results indicate that, once 
again, the stereographic projection parameters demonstrate a 
very fast and stable converge in the range of 12-50 steps. On 
the other hand, it is worth noting that in a total of 100 LM 
executions with random starting point, the axis-angle 
parameters failed to converge 3 times (timeout set to of 
20,000 steps), hence the spikes in the respective plot. 
 
7.3 Convergence to the south pole 
The only point on the unit sphere that cannot be represented 
with real values of the stereographic projection parameters is 
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the chosen center of projection, in our case, the quaternion 
0, 0, 0,−1 .  

 

 
Fig. 5. Performance comparison in the context of LM iteration for 
randomly generated quaternions in the neighborhood of the south pole. 
a) Plot of average number of steps required to reach the preset tolerance. 
b) Plot of average error norm (log scale) following convergence. 
 
 
 One would expect the LM iteration to demonstrate 
instability in the convergence process and the parameter 
vector to explode. Surprisingly, none of the two happens 
(Figure 5). The experiment of section 7.2 was repeated using 
quaternions in a very close vicinity of the south pole. In 
particular, we generated random quaternions of the form: 
 
𝒒 = 𝛿𝑟, 𝛿𝑟, 𝛿𝑟,− 0.6 + 4𝛿𝑟 / 3 𝛿𝑟 ! + 0.6 + 4𝛿𝑟 ! 

 
where 𝛿 = 0.01 and r is a random number in 0,1 . This 
time, in order to push things further to the extremes, the 
desired tolerance levels were shifted to very low numbers in 
the range of 2 – 8 in the negative log scale. 
  Convergence remains extremely fast (Figure 5a) and the 
growth of the parameters follows the tolerance in a linear 
fashion (Figure 6). This means that the south pole can be 
well represented in practice with accuracy equal to the one 
of any other point on the sphere with the very “cheap” 
tradeoff of using relatively large numbers, yet clearly well 
within floating point representation range. 
 

 
Fig. 6. Average norm of the stereographic projection parameter vector 
for preset tolerance in the range of 10-3 to 10-8. 
 
 
8. Conclusions 
 
Two parameterization schemes for rotation matrices in terms 
of quaternions were presented in this paper. The methods are 
introduced in a way such as to provide the intuition and 
formulas to the aspiring programmer of optimization 
routines such as bundle adjustment, or non-linear Kalman 
filters in the context of problems in robotics and/or computer 
vision. 
 The first parameterization described in section 5 
concerns the widely known axis-angle encoding of a rotation 
in a single 3D axis vector by choosing its norm to be equal 
to the angle of the rotation. This scheme is generally 
flexible, widely used and easy to implement in any 
programming language. However, it makes rather extensive 
use of irrational trigonometric functions inside the 
expressions of the derivatives, thereby subjecting the final 
result to several additional approximations. Another 
practical drawback of this approach has to do with the fact 
that the gradient contains the third power of the rotation 
angle in the denominator, which naturally yields instability 
when dealing with small perturbations. In practice, this 
parameterization introduces instabilities in convergence 
(steps are in the range of 12-20,000 or more), depending on 
the sought orientation and starting point. 
 The second parameterization introduced in section 6 is 
motivated by the homeomorphic relationship between the 
4D unit sphere and the 3D projective space. With this 
approach, unit quaternions are parameterized by a point in a 
3D equatorial hyperplane which is projected onto the 4D 
unit hypersphere via a simple stereographic projection. The 
parameterization is numerically superior to the one using the 
axis-angle approach, in the sense that all expressions in the 
derivatives turn out to be rational functions with less 
complex expressions in the numerator and denominator 
when compared to the respective ones obtained with the 
axis-angle parameters. Last but not least, back and forward 
projections between the plane and the sphere (i.e., 
conversions between the quaternion and its respective 
parameter vector) are done rationally with very little 
computations. The aforementioned superiority was observed 
in practice during steepest descent and LM executions for 
randomly generated rotations. The stereographic projection 
parameters behave very robustly in terms of convergence 
regardless of starting point and sought orientation. 
Experimentation showed that the “south pole” of the 
projection, although theoretically not representable by real 
values of the parameters, it is however very much 
“reachable” by the LM algorithm at same speed and 
accuracy as any other quaternion on the sphere. Moreover, 
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the performance (convergence achieved within 12-48 steps 
for all error tolerance settings) suggests that the method is 

suitable for use in real-time applications. 

 
 

______________________________ 
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