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Abstract. This paper examines the case of a bipedal robot under an
external impact along the axis of the two supporting feet. The dynam-
ics of the robot is modelled using the 3-Mass Linear Inverted Pendulum
Model. The model shows that, for impacts below a given threshold, the
robot recovers naturally and no corrective action is required. For larger,
destabilising impacts, this paper described how to calculate a single or
a sequence of corrective steps. The key information used for the calcu-
lations is the initial velocity generated by the impact. The behaviour
of the model for various initial configurations and impact parameters is
illustrated by simulations.
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1 Introduction

The detection of destabilising events and the prevention of falls is a crucial func-
tionality of future real-world walking robots. Notably, the IEEE International
Conference on Robotics and Automation 2016 had a workshop devoted to Legged
Robot Falling: Fall Detection, Damage Prevention, and Recovery Actions 1. The
work presented here focuses on bipedal Humanoid robots. These robots are un-
stable when compared to other robots with wheels, or additional legs. Falls can
be costly, both in the time taken for the robot to recover and in potential repairs
for any damage sustained. To allow humanoid robots to be deployed in a real
world requires that they be able to take corrective action to unforeseen impacts.

2 The 3-Mass Linear Inverted Pendulum Model

Initial work on modelling gait used an Inverted Pendulum Model (IPM) with a
single mass located on top of a massless pole [1]. The IPM has been further
developed into a Linear Inverted Pendulum Model (LIPM) for use in robot
controllers [3]. The LIPM adds a constraint into the motion of the pendulum,

1 http://www.icra2016.org/
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keeping the height of the mass above the plane of motion at a constant distance.
This simplifies computation by decoupling the foward and lateral motions.

While functional, this model proved to be insufficient when used in a robot
controller. Work by Yuping et al [4] showed the importance of the mass distri-
bution in a walking system. Therefore, an improvement to the model would also
be modelling the mass distribution in the system.

Bugmann [2] expanded upon the LIPM to create a 3-Mass Linear Inverted
Pendulum Model (3-MLIPM). By looking at torques created by gravity and how
they relate to propulsion torques, the following formula can be found for a system
of n number of joints and masses:

n∑
i=1

miẍizi =

n∑
i=1

gmixi

n∑
i=1

miÿizi =

n∑
i=1

gmiyi (1)

This torque equation (1) can then be further used in an equation for the
forward walking gait of the robot.

Fig. 1. 3-Mass robot model for a walking gait, with the motion going towards the left.
The masses are linked together by virtual poles that maintain a constant height(z1).
Note that in a real robot the height constance is achieved by using articulated knee
joints. The masses m1 and m2 are at (x1, z1) and (x2, 0) respectively. m3 is located at
(0,0) and does not affect the dynamics of the system. [2]

Using these torque equations to work out accelerations, it is possible to work
out the upper-body (m1) motion for a walking gait. The swinging foot (m2) is
assumed to have a sinusoidal motion where T is the time to complete one whole
cycle of the gait:

x2,t = −2xs · cos(
2π

T
t) (2)

The equation for motion for m1 is then:
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x1,t = C1cosh(a1t) + C2sinh(a1t) + C3cos(ωt) (3)

Where:

C1 = x1,0 − C3 C2 =
v1,0
a1

C3 =
m2g2xs

m1z1(α2
1 + ω)

ω =
2π

T

α1 =

√
g

z1
(4)

The 3-MLIPM appears to provide a much more accurate model of the motion
of a robot while walking compared to the IPM, showing that the swinging leg
has the effect of pulling on the central mass (m1) of the body. From equation
(3) we are able to work out the position of the main body mass with an initial
velocity and initial position. So far we have used this to generate a walking gait.

3 Identifying a De-Stabilising Impact

To identify shorty after impact whether a corrective action is needed, a model
of the stability of the robot needs to be created. Here, the 3-MLIPM will be
expanded upon. Unlike equation (3) we are not looking at the leg already in
motion, as during a normal walking gait. Here, all masses are initially static.
The masses m1 for the mass of the main body of the robot, and m2 for the mass
of the leg that is not being used as the pivot will be considered. These are at
positions (x1, z1) and (x2, 0) respectively (figure 1). Using equation (1) we get
the formula:

m1ẍ1z1 = m1x1g +m2x2g → ẍ1 = x1
g

z1
+
m2x2g

m1z1
(5)

For simplicity the equation is re-written as:

ẍ1 = α2
1 · x1 − α2 (6)

Where α1 remains the same as in equation (4) and:

α2 =
−m2x2g

m1z1
(7)

As an estimate based on equation (3) the formula for motion should be able
to be represented as an equation in the form:

x1,t = D1cosh(α1t) +D2sinh(α1t) +D3 (8)

From this the first and second derivatives are then calculated:
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ẋ1,t = D1α1sinh(α1t) +D2α1cosh(α1t) (9)

ẍ1,t = D1α
2
1cosh(α1t) +D2α

2
1sinh(α1t) (10)

= α2
1 · x1 −D3α

2
1 (11)

For (8) to be correct, (11) should be equal to (6). This is the case if:

D3α
2
1 = α2 (12)

Therefore:

D3 =
α2

α2
1

(13)

To workout D1 and D2 we take the case where time is set to zero (t = 0).
Using equation (8):

D1 = x1,0 −D3 (14)

Using equation (9):

ẋ1,0 = v0 D2 =
v0
α1

(15)

This means that it is possible to predict the motion of the robot based on an
initial position (x1,0) and an initial velocity (v0) resulting from the impact.

Fig. 2. Graphs showing model of position of x1. On the left, the motion of x1 in a
stable system. On the right the motion of x1 in an unstable system.

If the initial velocity is low enough then x1 will oscillate between a front
and back excursion amplitude, eventually coming to a stop due to friction. For
an amplitude beyond a given tipping point the position of x1 will continue to
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accelerate. The model assumes that the height stays constant which allows the
speed to increase infinitely. However, in reality, the legs will no longer be able to
maintain this height and the robot will fall over. The tipping point of the robot
is slightly beyond the pivot leg. This position can be worked out by calculating
when acceleration is zero by using equation (10), which resolves to the value of
D3.

So for the robot to remain stable, the velocity of the position of x1 must
reach zero. By using equation (9) the robot can be determined to be stable if
the following equation is true at some value of time:

v0
a1(D3 − x1,0)

= tanh(α1t) (16)

As the function tanh has two horizontal asymptotes at y = −1 and y = 1,
and time can only have a positive value the following constraint can be made if
equation (16) is to evaluate to true at some point in time, thereby showing that
the system is stable:

0 ≤ v0
a1(D3 − x1,0)

< 1 (17)

This constraint means that by looking at the initial velocity, and the initial
position it is possible to immediately decide if the robot will become unstable
and fall, thereby being able to start the corrective action as soon as possible.

4 Calculating a Stabilizing Response

Once a de-stabilising event has been detected, the robot controller needs to react
quickly and efficiently. To do this we need to calculate the new position for the
robot to move one of its feet to stabilise itself. To calculate this, the motion
needs to be re-calculated considering the fact that the robot now has a swinging
foot with a non-zero mass. It is assumed that the swinging foot has a sinusoidal
motion, similar to equation (2). However, unlike the previous equation the new
position of x2 is not a fixed distance ahead of the previous pivot point but needs
to be determined based on the impact. This position will be called x2,t′ , where
t′ is the time where the swinging foot touches the ground, becoming the new
pivot foot:

x2,t′ = x2,0 +
1

2
(x2,t′ − x2,0) · (1− cos(ωt)) (18)

The new equations for the motion of the robot based on the torque equation
(1) and motion of the foot becomes:

ẍ1 = x1
g

z1
+

m2g

m1z1
(x2,0 +

1

2
(x2,t′ − x2,0) · (1− cos(ωt))) (19)

= α2
1x1 + α3x2,0 +

α3α4

2
− α3α4

2
cos(ωt) (20)



6

Where α1 remains the same as in equation (4), ω represents the angular
velocity, and:

α3 =
m2g

m1z1
α4 = x2,t′ − x2,0 (21)

Again the model for the position of the robot is estimated based on equation
(3):

x1,t = E1cosh(α1t) + E2sinh(α1t) + E3cos(ωt) + E4 (22)

The first and second derivatives are calculated:

ẋ1,t = E1α1sinh(α1t) + E2α1cosh(α1t)− E3ωsin(ωt) (23)

ẍ1,t = E1α
2
1cosh(α1t) + E2α

2
1sinh(α1t)− E3ω

2cos(ωt) (24)

= α2
1x1,t − α2

1E4 − (α2
1E3 + E3ω

2) · cos(ωt) (25)

For equation (22) to be correct, equation (25) should be equal to equation
(20). This is the case if:

E3 =
α3α4

2(α2
1 + ω2)

E4 =
2α3x2,0 + α3α4

−2α2
1

(26)

E1 and E2 are worked out by looking at the case where time is set to zero
(t = 0). Using equation (22) for E1 and (23) for E2:

E1 = x1,0 − E3 − E4 E2 =
v0
α1

(27)

The position needs to be calculated based on the swinging foot having reached
its front position (t′). This occurs when:

cos(ωt′) = −1 (28)

The position and velocity is now calculated based on this:

x1,t′ = E1cosh(α1t
′) + E2sinh(a1t

′)− E3 + E4 (29)

vt′ = E1α1sinh(α1t
′) + E2α1cosh(α1t

′) (30)

By adjusting equation (17) to look at the new position of the robot an analysis
can be made for the position and velocity to see if this will stabilise the robot:

0 ≤ vt′

α1(
α3x2,t′

α2
1
− x1,0′)

< 1 (31)
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As the position used in these equations is relative to the position of the pivot
foot:

x1,0′ = x1,t′ − x2,t′ (32)

Using these equations and expanding out all the terms that contain x2,t′ the
minimum movement required to stabilise the robot can be found:

x2,t′ >
α7(E2 + x1,0) + α3x2,0( 1+α7

α5
+ 1−α7

α6
)

1 + α3( 1
α2

1
+ 1+α7

α5
+ α7−1

α6
)

(33)

Where:

α5 = 2(α2
1 + ω2) α6 = −2α2

1

α7 = cosh(α1t′) + sinh(α1t′) (34)

Fig. 3. A graph showing an example of the balance region for a robot. The line with-
out a marker shows the minimum step required defined by equation (33). The square
marked line shows the maximum position reachable by the foot based on it having a
simple linear speed, in reality this would need to be calculated based on the configu-
ration of the leg and servos. The star marked line shows an example of the maximum
position the foot can reach.

With a calculation for the minimum step, and knowledge of the maximum
speed and reach of the leg, a region of coordinates in time and space can be
shown. Figure 3 shows an example of this region below the marked lines repre-
senting the position the leg can reach and the speed it can reach the position at,
and above the unmarked line showing the minimum step required. This region
then represents the possible movements of the leg that will balance the robot in
a single step.
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Fig. 4. A graph showing the stability coefficient of the robot. The square marked line
represents the initial stability calculated using equation (17). The line without a marker
is the stability coefficient assuming the robot moves the leg at an assumed maximum
possible speed using equation (30). The star marked line shows the stability that needs
to be reached. Note the lines at 0.08 and 0.42 are caused by asymptotes and do not
reflect true values.

In many cases it is likely that a single step will not be enough to stabilise the
robot. In this case the robot needs to take a sequence of corrective steps. Each
step should have the effect of reducing the overall speed that has been created by
the impact. This can be done by analysing the stability coefficient of a potential
step and seeing if this can be made smaller than the previous stability coefficient,
while remaining over 0.

Fig. 5. Graphs showing a simulated impact and reaction of a robot. On the left the
position if the robot takes no action, showing a fall. On the right the robot takes two
steps. Step 1 is completed at 0.24 seconds and step 2 is completed at 0.52 seconds.
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If this reduction of the stability coefficient continues then the robot reaches
a state where one more step will lead to a balanced state of the robot as shown
in figure 5. This shows that it is possible to balance the robot if an initial speed
and position of the main mass of the robot can be calculated compared to the
position of the leg.

5 Conclusion

This model shows that knowing the position of the robot and the velocity created
by the impact, an immediate decision can be made as to whether a reaction is
necessary, and the stepping sequence that will correct the instability.

To actually implement this in a robot there are two main challenges that need
to be resolved. The first is to measure the velocity resulting from the impact.
Using an accelerometer and integrating the values to get a measurement for
speed seems the most likely solution but the accelerometer needs to be able to
sample at a high enough frequency, and drift accounted for.

The second challenge that needs to be overcome is the lateral motion of the
robot required to lift the leg. Bugmann’s [2] paper on the 3-MLIPM describes the
lateral motion during a walking gait, where the lateral motion is at maximum
velocity when both feet are on the ground, and acceleration is minimal. However,
in the case of a robot suddenly reacting to an external impact the opposite is
true, the robot has no velocity, and needs maximum acceleration to account for
this.
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