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  Abstract—We investigate the problem of achieving robust control of hand prostheses by the 

Electromyogram (EMG) of transradial amputees in the presence of variable force levels, as 

these variations can have a substantial impact on the robustness of the control of the prostheses. 

We also propose a novel set of features that aim at reducing the impact of force level variations 

on the prosthesis controlled by amputees. These features characterize the EMG activity by 

means of the orientation between a set of spectral moments descriptors extracted from the EMG 

signal and a nonlinearly mapped version of it. At the same time, our feature extraction method 

processes the EMG signals directly from the time-domain to reduce computational cost. The 

performance of the proposed features is tested on EMG data collected from nine transradial 

amputees performing six classes of movements each with three force levels. Our results indicate 

that the proposed features can achieve significant reductions in classification error rates in 

comparison to other well-known feature extraction methods, achieving improvements of ≈6% to 

8% in the average classification performance across all subjects and force levels, when training 

with all forces. 

 

Index Terms— Classification, Force level variation, Myoelectric control, Pattern recognition, 

Robustness, Surface Electromyogram (sEMG), Transradial amputees. 
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I. INTRODUCTION 

N the United States, there are nearly 2 million people living with limb loss [1] with approximately 

185,000 amputations occurring every year [2]. The main causes for limb loss include vascular 

disease (54%) and trauma (45%) with upper-limb amputations accounted for the vast majority 

(68.6%) of all trauma-related amputations, according to the statistics of National Limb Loss 

Information Centre [3].  

Many advances were achieved during the past decades in the development of multifunctional upper 

limb prostheses controlled with EMG. These include advanced research hands [4]–[7] and 

commercially available hands [8]–[11], both employing conventional myoelectric control strategies 

[12]. In addition, advanced control techniques such as Pattern Recognition (PR) based EMG 

control[13], [14] and regression techniques[14], [15] were also proposed and investigated. However, 

no prosthesis is available in the market that has the capability to perform multiple functions with 

reliable performance. This is partially due to a big gap between academia and industry, which limits 

the clinical implementation of prostheses for amputee use. The impact of such a gap is anticipated to 

continue expanding unless a change of focus in myoelectric control systems occurs [16]. The lack of 

intuitive control, poor system reliability and the lack of robustness against practical problems were all 

identified as outstanding obstacles contributing to this gap [14], [16]. Nowadays, researchers in this 

field are mainly focused on tackling the practical problems, that may impact the robustness and 

reliability during daily life usage of PR systems, such as different arm positions or arm postures[17]–

[20], electrode shift [21], [22], signal non-stationarity [23], and force variation [13].  

The effect of the variation in the force of contraction on hand movement classification has received 

little attention, with most studies focusing on evaluating the performance on intact-limbed subjects 

rather than the amputees. The signature of the EMG signal changes with varying force levels due to 

modifications in the EMG time-frequency characteristics and the probability density function [24], 

[25]. These changes may degrade the performance of the PR system, which may fail to produce the 

proper decision for a particular movement.  

I 



Tkach et al. [26] studied the stability of Time Domain (TD) features with a Linear Discriminant 

Analysis (LDA) classifier during low and high forces with EMG signals collected from only intact-

limbed subjects for four forearm movements. They found that training the classifier with low force or 

with combined low and high forces provided better accuracy than when training the classifier with 

only the high level of force. However, they did not include the medium force level to investigate the 

variability of the signals for a given movement. Moreover, hand and finger movements were not 

investigated, which are the main movements needed by the transradial amputees for prosthesis 

control[27].  

In [13], the effect of force level variation on the performance of PR based EMG control was 

investigated for intact-limbed subjects who performed 9 classes of hand motion. The force level 

varied from 20% to 80% of the maximum voluntary contraction. TD features and an LDA classifier 

were also used for classification. To test the ability of the PR system to handle new forces, the 

classifier was trained with each force level, and then tested with all force levels. The classification 

error rates were between 32% and 44%, compared to 8-19% when training and testing with the same 

force level. The high error rates when testing with the unseen forces reflect the importance of the 

problem of force variation, which will render the PR system unusable at all. 

In [28], three force levels were measured (30%, 60% and 90% of the maximum long term voluntary 

contraction) for only intact-limbed subjects. All force levels were included in the training and testing. 

However, testing with individual force levels in order to examine the effect of changing the force on 

the classification performance was not performed.   

Recently, a feature extraction method based on discrete Fourier transform and muscle coordination 

was proposed by He et al.[29] and applied to EMG data collected from intact-limbed subjects who 

performed nine wrist movements with three different force levels. The classification accuracy was 

increased by approximately 11% when using the proposed features compared to the TD feature set. 

However, a specific sensor-placement configuration, by which the EMG electrodes were attached on 

pre-specified forearm muscles, was reported as vital for the algorithm to perform well. This 

configuration is limited by the difficulty to place the electrodes on the deformed amputee stump, 

which may make it difficult to reproduce their results with the transradial amputees. 



In most of the previous work, the experiments were conducted only on intact-limbed subjects who 

benefited from visual and proprioceptive feedback from the hand [13], [26], [29]. In real life, an 

amputee lacks both these feedbacks because of the loss of the limb after the amputation process. More 

importantly, it is not known if these findings can be generalized to amputees since they have a 

different muscle structure after amputation. In our pilot work [30], the effect of force variation on the 

PR system performance was investigated for two transradial amputees who performed only four hand 

movements. The results showed that the performance of the myoelectric control system is degraded 

by up to 60% when the force level varied and that TD features outperformed Autoregressive (AR) and 

root mean square features. 

The dependency on the well-known time domain features and AR model parameters was also obvious 

in most of the previous studies in this direction, without thorough investigations into novel feature 

extraction methods. Achieving features invariant to force levels would be a remarkable breakthrough 

towards reliable control of hand prostheses with PR systems. This calls for a new method to control 

the force in measurements with amputees rather than relying on traditional methods from the 

literature. Previous research also necessitated training the classifiers with features from all anticipated 

force levels that the subject may exert during real-time testing [13], [26], [28], [30]. However, such a 

scheme has not been fully explored with different feature extraction methods while collecting the 

EMG signals from amputees. Thus, extracting a set of EMG features invariant to force level variations 

should also be investigated, preferably on amputees as they are the main persons in need for such 

robust technology. 

Recently, Khushaba et al.[18] proposed a time-dependent spectral Feature Extraction (FE) method 

that extracts a set of power spectrum characteristics directly from the time-domain to reduce the 

impact of variation of limb position, while keeping a low computational cost. The proposed method 

achieved a significant reduction in classification error rates, in comparison to other traditional 

methods and it helped to improve the practical robustness against variation in limb position without 

the need for accelerometers as done in [17], [20]. However, this was only applied to EMG collected 

from intact-limbed subjects. The proposed spectral moments were also used in [31] to develop multi-



user myoelectric interfaces which can adapt to novel users and maintain good movement recognition 

performance. 

This paper investigates the practical problem of variable force levels for PR-based systems when used 

by the amputees, and how to improve the practical robustness of the PR system against force variation 

with a proper training strategy and robust EMG features. More specifically, our contributions are: 1) 

A modified version of Khushaba el al.[18] spectral moments will be proposed to reduce the effect of 

forcevariation[18] and they will be compared to the traditional FE methods across nine transradial 

amputees; 2) A training strategy will be investigated in detail to help to decrease the effect of force 

change for the amputees. 

II. MATERIALS AND METHODS 

A. The Proposed Feature Extraction Technique 

The proposed novel feature extraction algorithm extends the recent work by Khushaba et al. [18], [32] 

in an attempt to form a set of invariants to force level variations in two steps. In the first step, a set of 

power spectrum moments are extracted directly from the time-domain signal using signal norms and 

derivatives in a similar manner to that in [18]. The main idea here is to reduce the computational cost 

required for spectral moment feature extraction by directly extracting these features from the time 

domain using Fourier transform (FT) relations and the Parseval's theorem. Unlike the works in[18] 

and [32], we also extract the power spectrum moments from a logarithmically scaled version of the 

EMG signal, a step which results in a modified form of the well-known cepstral feature extraction 

[34]. In addition, since the derivatives employed in the first step are known to be easily affected by 

noise, it is then important to normalize the extracted feature values to reduce the impact of noise. For 

this specific purpose, we employ a normalization step by raising the log-scaled-amplitudes to a 

suitable power[35], before implementing the second step in the feature extraction process, as will be 

explained in the next section. 

In the second step, we employ the cosine similarity to estimate the orientation between the extracted 

power spectrum characteristics from the original EMG signals and their nonlinear cepstral version and 

employ the orientation vector as our proposed feature set. The full algorithm description is presented 

in the next section. 



1) Time-Dependent Power Spectrum Descriptors (TD-PSD) 
 

Given a sampled version of the EMG signal denoted as x[j], with j=1,2,…N, of length N and a 

sampling frequency fs Hz, the EMG trace within a certain epoch can be expressed as a function of 

frequency X[k] by means of Discrete Fourier transform (DFT). We start the feature extraction process 

by observing Parseval's theorem which states that the sum of the square of the function is equal to the 

sum of the square of its transform 

 
…(1) 

where P[k] is the phase-excluded power spectrum, i.e., the result of a multiplication of X[k] by its 

conjugate X*[k] divided by N, and k is the frequency index. It is generally well-known that the 

complete frequency description as derived by means of the Fourier transform is symmetric with 

respect to zero frequency, i.e., it has identical branches stretching into both positive and negative 

frequencies [36]. As a consequence of this symmetry and because we have no direct access to the 

power spectral density from the time-domain then we are left with the option of dealing with the 

whole spectrum, including positive and negative frequencies. Thus, in a statistical approach to the 

shape of the frequency distribution, all odd moments will become zero, according to the definition of 

a moment m of order n of the power spectral density P[k] which is given by 

 
…(2) 

 
 

In the above equation, when n=0 we will make use of Parseval's theorem in Eq.(1), and for non-zero 

values of n we will use the time-differentiation property of the Fourier transform. Such a property 

simply states that the n'th derivative of a function in the time-domain, denoted as  for discrete time 

signals, is equivalent to multiplying the spectrum by k raised to the n'th power 

 …(3) 

To this end, we define the features utilized in this paper as shown in Fig.1: 



· Root squared zero order moment ( ): A feature that indicates the total power in the 

frequency-domain, or simply the strength of muscle contraction, which is given as 

 
…(4) 

 

The resultant zero order moments from all of the channels can also be normalized by division 

by the sum of the zero order moments from all of the channels. 

 

· Root squared second and fourth order moments: according to Hjorth [36] the second 

moment can be considered as a power, but then of a modified spectrum , 

corresponding to a frequency function  

 
…(5) 

A repetition of this procedure gives the moment. 

 
…(6) 

 

In this case, taking the second and fourth derivatives of the signal reduces the total energy of 

the signal; hence, we apply a power transformation to normalize the range of 

and to reduce the effect of noise on all moments based features as follows 

 

 

 

…(7) 

 

With empirically set to 0.1. The first three extracted features from these variables are then 

defined as. 



 

 

 

…(8) 

 

· Sparseness: this feature quantifies how much energy of a vector is packed into only a few 

components. It is given as 

              …(9) 

 

Such a feature describes a vector with all elements equal with a sparseness measure of zero, 

i.e., and =0 due to differentiation and log( / )=0, whereas for all other sparseness 

levels, it should have a value bigger than zero[18].  

· Irregularity Factor (IF): a measure that represents the ratio of the number of upward zero 

crossings divided by the number of peaks. According to [37], the number of upward zero 

crossings (ZC) and the number of peaks (NP) in a random signal can be expressed solely in 

terms of their spectral moments. The corresponding feature can be written as 

 
…(10) 

 

· Waveform Length Ratio (WL): Given the definition of the waveform length feature as the 

summation of the absolute value of the derivative of the signals, then we define our WL 

feature as the ratio of the waveform length of the first derivative to that of the waveform 

length of the second derivative.  

 
…(11) 

 

The waveform length feature was shown to be very relevant for EMG classification tasks[38]. 

However, the proposed WL feature further extends the work in the literature to form a feature 

that is invariant to amplitude scaling. 



Fig. 1.  Block diagram of the proposed feature extraction process. 

According to the schematic in Fig. 1, we first extract the proposed six features from each EMG record 

x and form a vector denoted as [ ]. An additional feature vector, denoted as 

b [ ] is then extracted from a logarithmically scaled version log (x2) to end up with 

two feature vectors:  (from the EMG record) and  (from a nonlinearly scaled version of the EMG 

record), each made up of 6 elements. Our final features, being 6 extracted features per each EMG 

channel, are then extracted as the orientation of the two vectors given by a cosine similarity measure 

as defined below 

 
…(12) 

 
 

The features represented by the resultant vector are used in the classification process. These features 

can be thought of as a type of cepstral representation of the EMG activity. However unlike the well-

known speech cepstral features (a nonlinear spectrum-of-a-spectrum or the inverse FFT of the 

logarithm of the spectrum, depending on the implementation [34]), we derived our EMG features as 

the orientation between the features extracted from a nonlinearly mapped EMG record and the 

original EMG record according to Eq.(12). Our main justification for not using  or  feature vectors 

directly as our resultant features is that feature vector  is less affected by the level of contraction 

efforts than  and  feature sets, as the resultant vector  is a measure of orientation and not 

magnitude. The orientation based feature extraction methods were recently shown to be of significant 

importance to the problem of EMG classification under varying force levels, when tested on intact-

limbed subjects, as force production relies on the coordination of multiple hand muscles [29]. 

However, no previous experiments were made to test the effectiveness of such features on amputees. 

In the next subsections, we prove the suitability of the proposed orientation based feature set to 

classify the EMG signals, with variable forces levels, for the transradial amputees. In the rest of the 

paper, we denote our final feature set , concatenated from all channels, as the Time-Dependent 

Power Spectrum Descriptors (TD-PSD). 



B. Amputee Participants, Electrode Placement and Signal Acquisition  

Nine transradial amputees (seven traumatic and two congenital) with unilateral amputation 

participated in this study. The details of the demographic information for each amputee are shown in 

Table1. The EMG datasets for amputees TR1-TR6 (Transradial 1 to 6) were collected at the Artificial 

Limbs and Rehabilitation Centres in Baghdad (Iraqi Army) and Babylon (Ministry of Health), Iraq, 

while the EMG datasets for TR7 (Transradial 7), CG1 (Congenital 1) and CG2 (Congenital 2) were 

collected at Plymouth University, UK. The local ethical committee at the School of Computing and 

Mathematics, Plymouth University approved this research. The aim of the experiments was explained 

to the participants, and they gave their written informed consent to participate in the study.TR1-TR7 

did not wear myoelectric prosthesis while CG1 and CG2 used it for a certain time of their life. 

Table 1. Demographic information of the amputees who participated in the study 

 

 

 

 

 

 

 

 

Cir= Circumference, Traum=Traumatic, Cong= Congenital, Amp=Amputation, Myo=Myoelectric, BP=Body Powered, Cos=Cosmetic 

 

Before the placement of the sEMG electrodes, the skin of the subjects was cleaned with alcohol and 

abrasive skin preparation gel (NuPrep®, D.O. Waver and Company, USA) was applied. Eight pairs of 

Ag/AgCl electrodes (Tyco healthcare, Germany) connected to a differential amplifier were placed 

around the left stump in one or two rows for all amputees apart from CG2 where the electrodes were 

placed on the right stump. Fig. 2 shows the electrode locations for CG1 as an example. European 

recommendations for sEMG (SENIAM) were followed for placing the surface electrodes, and the 

elbow joint was used as reference to mark the electrode locations.  

Fig. 2 .The surface electrodes locations for the amputees showing the left stump for CG1. 
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(cm) 
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Amp 

Type of 

prosthesis  

TR1 25 M Traum Left 13  27 4 years Cos 
TR2 33 M Traum Left 18  24  6 years None 

TR3 30 M Traum Left 29  23.5  28 years COS 

TR4 27 M Traum Left 16  23 4 years BP 

TR5 35 M Traum Left 23  26  8 years Cos 

TR6 29 M Traum Left 24  26 7 years Cos 

TR7 57 M Traum Left 14  27  3 years None 
CG1 19 F Conge Left 9  19  N/A Myo 3-12y  

CG2 31 F Cong Right 10.5  27  N/A Myo 8-16 y 



A custom-build, multi-channel EMG acquisition system was used to acquire the data at a sampling 

rate of 2000Hz. A virtual Instrument (VI) implemented in LABVIEW (National Instruments, USA) 

was used for signal acquisition and display. This was used by the amputees to help to produce the 

needed force level.  

C. Experimental protocol  

Six movements including different grip and finger movements were investigated in this paper. These 

movements were discussed with the amputees, and they thought that they may be important to them. 

The gestures are: 1) Thumb flexion; 2) Index flexion; 3) Fine pinch; 4) Tripod grip; 5) Hook grip 

(hook or snap); 6) Spherical grip (power). 

To examine the effect of force variation on the performance of EMG-based PR systems, the following 

experimental protocol was used. After electrodes placement, each amputee was asked to examine the 

EMG signals on the screen in real-time and familiarize themselves with the changes in force of 

contraction for different movement. The objective was for them to see how the amplitude changed 

according to the force. They were given a couple of minutes to explore this.  

It is very challenging for the amputee to produce a different force level of contraction for a given 

movement because of the loss of visual and proprioceptive feedback from the hand after the 

amputation. The aim was to record lower and higher levels of force than the moderate level of force 

that the prosthesis usually works with. This intended to simulate the daily life scenario when the force 

of contraction may vary with everyday use. 

The amputees used their intact-hand to help them to imagine the needed movement with the required 

force. In addition, they used Visual Feedback (VF) from the Labview screen to see the EMG 

channels. This was useful for them to produce the needed force. It is worth mentioning that TR7 had 

diabetes mellitus, which caused the limb to be amputated. In addition, the participant was visually 

impaired with little vision capability, and he did not use glasses during the experiment. Instead, he 

used the intact-limb to help him to imagine the needed movement. In Fig. 3, TR5 is performing 

spherical grip with the help of the intact arm and VF from the EMG channels. 

 



Fig.3 Amputee TR5 executing the protocol for recording different force levels. He used the VF and intact limb 

to produce the spherical grip, as it can be seen in the picture. 

 

For each of the six grip patterns, the amputees produced three force levels: low, medium and high. For 

each force level, five to eight trials were recorded for each amputee where each trial is a holding 

phase lasting 8-12 seconds. Thus, the total number of trials performed by each amputee was equal to 

the number of movements× number of force levels ×number of trials for each movement.  

The following protocol was used for the recording of 3 forces levels: 

-Low Force: To record the EMG with different forces, each amputee was asked to produce the 

constant non-fatiguing contraction with “low level of force”, which is lower than the usual moderate 

level and hold it for 8-12 seconds. It is worth noting that the amputees found the visual feedback very 

helpful in producing a low level of contraction.  

-Moderate Force: In this step of the protocol, the amputees were asked to produce a moderate force 

level slightly higher than low level produced in the previous step, with constant non-fatiguing 

contraction with moderate force and hold the position for a period of 8-12 seconds for each 

movement. 

-High Force: A higher than moderate force level was produced by the amputees with the help of 

visual feedback and the intact-hand. They were instructed to produce high force level at a comfortable 

level to them, and to hold the contraction for 8-12 seconds. The Maximum Voluntary Contraction 

(MVC) was avoided since it might have caused fatigue due to the non-use of the muscle for long time. 

Preliminary investigation with some amputees to produce MVC for a given movement on the same 

day of the experiment caused some pain and fatigue. For this reason, MVC was not included in the 

recording protocol. 

In general, producing the low and high force levels was difficult for some amputees, as they had not 

used their remaining muscles in the stump for long time. Furthermore, the high force of the 

contraction produced a tremor on some occasions while performing the trial. It is worth noting CG1 

had some muscle twitches while she was performing the experiment. She took a longer relaxation 

time than other amputees between the sessions in order to avoid fatigue. Fig.4 shows an example of 



one trial EMG signal for one channel with 3 levels of forces (low, medium, and high) for spherical 

grip for the TR3. 

Fig.4 Single trial of one channel EMG signal for TR3 for different levels of contraction for spherical grip 

gesture. A. Low force. B. Medium force. C. High force. 

D. EMG pattern recognition Analysis 

 

MATLAB® 2013a software (Mathworks, USA) was used to perform the analyses. An overlapped 

segmentation scheme was used with 150 ms segment length and 50 ms segment overlap. The average 

controller delay for this setting is 100+τ ms (τ is the processing time for each segment), calculated 

according to the new average controller delay equations proposed in [39]. This delay lies within the 

acceptable controller delay for the EMG controlled prosthesis[40].  

An ideal feature set should be immune (or, at least, robust) to force change while maintaining a good 

class separability in order to be able to distinguish between many movements with multiple forces. 

First, we test the performance of our proposed TD-PSD feature set, against other well-known feature 

extraction methods from the literature. These include: 

1)Reduced spectral moments by Vuskovic and Du (denoted as VD-MOM) [41]; 

2) Time-domain features (denoted as TD) [13]which contain the following: integral absolute value, 

waveform length, zero crossings, slope sign changes, and kurtosis. It was shown that kurtosis is a 

good measure to characterize the force level changes based on an analysis of the probability density 

function of the EMG signal [24] and it has been used in the literature with EMG signals. For that 

reason, kurtosis was added to the TD feature set. 

3) A combination of time-domain and Autoregressive model parameters, with an AR model order of 

5, (denoted as AR+RMS) [42]; and 

4) Wavelet features, represented by the energy of the coefficients at each node of Symmlet-8 family 

tree with 5 levels decomposition with the wavelet family and the decomposition levels chosen 

empirically. 

The total number of features for each force level was 48, apart from the TD set which had 40 features 

(number of features × number of EMG channels).The dimensionality of the extracted feature set was 



reduced using the Spectral Regression (SR) dimensionality reduction method proposed by Cai et al. 

[43] and also used in [44]. SR maps the original feature set into a new domain with c−1 features only, 

with c being the number of classes, i.e., 5 features in our problem. 

In order to perform the classification of the reduced sets of features extracted in the previous step and 

to check the robustness of the proposed features to diverse classification schemes, four different 

classifiers were utilized in the experiments: Linear Discriminant Analysis (LDA) [13], [45], Naive 

Bayes (NB) [46], Random Forest (RF) [47], and k-Nearest Neighbour classifier (kNN) with k= 3 [18]. 

Majority Voting (MV) was not used in the post-processing of the classifications since it causes 

additional delays [39]. 

E. Impact of the Signal Processing and Training Strategies on the Performance of PR-based 

EMG Control under Changes in Force Level. 

We hypothesise that training data should be acquired from multiple forces to improve the robustness 

of the PR-based control against changes in force levels. In this section, we describe diverse 

experimental schemes set up to test this hypothesis. We will also determine the best force levels from 

which the training data should be acquired if considering only one level of contraction. The three 

experimental schemes are: 

1) Training the classifier with a single force level and testing it with the same level of 

force(Experimental Scheme 1, often used in the literature in studies disregarding the effect of 

force variations). 

2) Training the classifier with a single force level and testing it with the untrained (unseen) two 

force levels (Experimental Scheme 2). 

3) Training the classifier with all 3 levels of force and testing it with a single level of force at a 

time (Experimental Scheme 3). 

In our first investigation, three trials for each movement are used for training and the rest of the trials 

are used for testing (two to five trials). 



F. Statistical Tests 

Finally, in order to validate the statistical significance of the achieved classification results, a 

Bonferroni corrected Analysis of Variance (ANOVA) test with a significance level of 0.05was 

utilizedunder the null hypothesis that the classification error rates achieved by TD-PSD and the rest of 

the feature extraction methods that we compare against are not significantly different from each other. 

In such a case, small p-values of less than 0.05 casts doubt on the null hypothesis and suggest that the 

performance of each of the different methods being compared is significantly different from each 

other. As we have multiple factors and factor levels to test against, then a repeated measures ANOVA 

could be utilized here with factors including the different force levels (3 levels: low, med, and high), 

different subjects (9 levels: TR1-CG2), and different feature extraction methods (5 levels: including 

TD-PSD, VD-MOM, AR+RMS, TD, and Wavelets).However, we focus here on analysing the 

statistical differences between the results achieved by our proposed feature extraction method versus 

each other method and therefore the resultant p-values were corrected with Bonferroni analysis. In 

this case, for nine amputees each performing various movements at three levels of forces, we have 

concatenated the results across all subjects and force levels to form larger vectors each of 27 elements 

(9 subjects x 3 force levels) for each feature extraction method;and ran our Bonferroni corrected 

ANOVA on that, i.e., comparing our method versus each other method while considering two factors 

with multiple levels and correcting the output with Bonferroni analysis. 

III. RESULTS 

A. Impact of the Signal Processing and Training Strategies on the Performance of PR-based 

EMG Control under Changes in Force Level. 

 

1) Experimental Scheme 1: Training with single force level and testing with the same force level  

The average errors of classification for nine amputees are shown in Fig. 5 when training and testing 

the classifier with the same force (Experimental Scheme 1) with five feature sets (Section II. D)and 

four classifiers. The objective is to examine the effect of force level variation on the performance of 

PR based EMG control for six classes of movements. The standard deviation across 9 amputees is 

shown with error bars.   



Clearly, it can be seen that the errors for TD-PSD are relatively small for all three forces, as compared 

to the errors of other FE methods for all classifiers investigated, and they are near the errors for a 

usable system, hypothesised to be bounded at 10% by Scheme and Englehart [13]. When validating 

the results with the statistical significance tests, the returned p-values indicated significant differences 

between our proposed feature set and all other feature sets when using the LDA classifier with 

p<0.001 for TD-PSD vs VD-MOM, p= 0.0029 for TD-PSD vs. AR+RMS, p<0.001 for TD-PSD vs. 

TD, and p<0.001 for TD-PSD vs Wavelet features. The achieved p-values with other classifiers also 

agreed on the superiority of the TD-PSD feature set in this testing scheme with all tests returning p-

vales< 0.01 (all Bonferroni corrected), thus asserting the statistical significance of the lower 

classification error rates achieved by our TD-PSD versus all other methods from the literature. 

Moreover, very little differences among classifiers were observed. 

Fig. 5Average classification errors for nine amputees when training and testing the classifiers with the same 

force level (Experimental Scheme 1) with five feature sets and four classifiers (LDA, RF, NB and kNN). 

Standard deviations are shown with error bars.Ts denotes testing with a specific force. 

2) Experimental Scheme 2: Training with single force level and testing with the untrained 

(unseen) two force levels. 

Fig. 6 displays the average errors of classification for nine transradial amputees to examine the effect 

of force level variation on the performance of PR based EMG control for six classes of movements. 

The classifiers are trained at a given force level and tested with the unseen force levels (Experimental 

Scheme 2). The standard deviation across nine participants is shown with error bars. Clearly, the error 

rates are much higher than when training and testing with the same level of force as shown in Fig. 

5.The drastic change in classification accuracy when using a classifier trained with a non-appropriate 

force (>50%) may occur during the daily life usage of the prosthesis when the amputee may change 

the force level inadvertently. Thus, it is a very serious practical problem. It may be noticed in Fig. 6 

that TD-PSD features outperformed other FE methods, for all classifiers and for all training forces. 

The results of the statistical tests indicated that there were significant differences between the 

performance of our proposed feature set and all other feature sets with p<0.001 for TD-PSD vs. VD-

MOM, p= 0.0041 for TD-PSD vs. AR+RMS, p<0.001 for TD-PSD vs. TD, and p=0.0036 for TD-



PSD vs. Wavelet features. These results clearly indicate the statistical significance of the reduction in 

classification error rates achieved by our TD-PSD versus all other methods when training with a 

signal force level and testing with two unseen force levels. An additional important point to note in 

this training scheme is that training with medium force level and testing with low and high force 

levels achieved significantly lower, with p< 0.001, error rates than when training and testing on the 

other levels.  

Fig. 6Classification errors of nine amputees when training the classifier with one force and performing the 

testing with unseen force levels (Experimental Scheme 2). Standard deviation is shown with error bars. Tr 

denotes training with a specific force. 

3)  Experimental Scheme -3: Training the classifiers with all force levels and testing with single 

level of force 

The results for training the classifiers with the three force levels (low, medium, and high) and testing 

the classifier with a single level of force at a time (Experimental Scheme 3) for nine amputees are 

shown in Fig. 7. It can be noticed that the error rates dropped significantly from those displayed in 

Fig.6 for the case of unseen forces. The error rates are approximately 7-18 % when testing with low 

and medium forces, which is much closer to the acceptable level of error for a usable system[13] than 

the performance reported in Fig. 6. When training with all forces, TD-PSD features outperformed 

other FE methods for all classifiers used. The utilized ANOVA test results indicated significant 

differences with p<0.001for TD-PSD vs. VD-MOM, p<0.001 for TD-PSD vs. AR+RMS, p<0.001 for 

TD-PSD vs. TD, and p<0.001for TD-PSD vs. Wavelet features (all results were corrected with 

Bonferroni analysis). In Fig. 5, Fig. 6 and Fig. 7, and for all cases, TD-PSD outperformed other FE 

methods and for all classifiers investigated. This may suggest the suitability of TD-PSD features for a 

PR system trained with multiple forces based on the analysis of amputees' EMG signals. 

Fig. 7Classification errors for nine amputees when training with all force levels and testing the classifier with 

each level of the three forces (Experimental Scheme-3). Standard deviation is shown with error bars.Ts denotes 

testing with a specific force. 



In order to choose the best classifier to perform the subsequent analysis, we calculated the processing 

time needed to perform Dimensionality Reduction (DR) and classification for all classifiers for all 

amputees when we train with all forces on a Pentium-4 computer with an 2.6 GHz Intel Core i5 

processor, 8 GB RAM with MATLAB 2013a. Table 2displays the processing time needed to perform 

the DR and classification for each window of the EMG of length of 150 ms, once the system had been 

trained, averaged across all FE methods for a given classifier. The table also shows the average 

classification error for all classifiers. Clearly, it can be noticed that the LDA classifier achieved the 

lowest processing time and classification error compared to other methods. For that reason, LDA 

classifier was chosen to perform the subsequent analysis of inter-individual differences in the paper. 

Table 2 Average processing time (ms) and average classification error for DR and classification when training 

with all forces displayed in Fig. 7 

 

Classifier 

 

Average error rates when 

testing with three forces 

Time for DR and 

classification (ms) 

LDA 17.42157894 0.0129 

RF 17.96601177 2.04 

NB 19.07247126 0.013 

kNN 19.13680148 0.784 

 

In order to evaluate the processing time of each window with the different feature sets, we calculated 

the processing time to perform the FE with LDA classifier when we train with all forces. Table 

3shows the processing time calculated in ms for the 5 FE methods investigated in this paper. TD-PSD 

achieved the fastest processing time of 0.3 ms compared to other FE methods.  

 

Table 3The processing time (ms)for FE classified with LDA classifier when training with all forces. 

 

Feature 

set 

Time for FE 

(ms) 

TD-PSD 0.2922 

VD-MOM 2.2245 

AR+RMS 1.9794 

TD 0.7887 

Wavelet 0.41 

A more comprehensive way for experimental Scheme 3 with the results for each amputee with TD-

PSD and LDA classifier is shown in Fig.8.For testing with low force, TR1 was the worst performer 

whereas TR5 was the worst performer when testing with medium and high forces. On the other hand, 

TR6 was the best performer when testing with medium and high forces while CG1 was the best 



performer when testing with low force. Fig.8suggests that the performance for the amputees was 

variable. Such variability in the results between the subjects may be due to different level of 

amputation and time since amputation for each amputee[45]. 

Fig. 9 shows the average confusion matrix for nine amputees with TD-PSD and LDA classifier with 

experimental scheme 3 when testing with A)low, B) medium and C) high forces. The average 

classification accuracy when testing with low force was 93% while for medium and high forces; the 

classification accuracy was 90.3% and 82%, respectively. The data suggest a tendency for errors to 

occur in the fine pinch and spherical grip in all forces. This will be further discussed in Section IV. 

Fig.8 The results the experimental Scheme3 for nine amputees when training with all forces with TD-PSD and 

LDA classifier for nine amputees. The mean of all amputees is shown and error bars represent standard 

deviation. 

We compared the classification performance of the proposed TD-PSD to the state-of-the-art FE 

method based on Discrete Fourier Transform (DFT) with 2 normalization schemes (Norm-1 and 

Norm-2) [29]. Table 4 illustrates the average classification errors with their standard deviation across 

9 amputees when training with all forces and testing with a single force level at a time with LDA 

classifier. We also calculated the processing time to perform FE with DFT method and the proposed 

TD-PSD for the sake of comparison on a Pentium-4 computer with an 2.6 GHz Intel Core i5 

processor, 8 GB RAM with MATLAB 2013a. 

 

Table 4Average classification errors in percent ( and their respective standard deviation) for 9 amputees when 

training with all forces and testing with each force level for several FE methods available in the literature, 

including the recently proposed DFT features (LDA classifier was used). 

 

Feature Set Low Med High 

TD-PSD 7.70 ± 2.89 9.91 ± 3.91 18.54± 7.37 

VD-MOM 17.74 ± 7.35 18.82 ± 5.78 30.82 ± 10.78 

AR+RMS 10.71 ± 4.33 12.75 ± 5.00 20.89 ± 7.62 

TD-PSD 12.98 ± 8.23 15.54 ± 6.19 27.83 ± 7.86 

Wavelet 13.38 ± 7.28 15.95 ± 5.11 27.75 ± 10.31 

DFT-Norm-1 25.13 ± 10.68 25.40 ± 7.85 36.95 ± 10.75 

DFT-Norm-2 21.26 ± 9.45 22.54 ± 6.23 33.43 ± 8.50 

 



Fig.9 Confusion matrices while training the LDA classifier on the data from all forces and testing the classifier 

on TD-PSD features extracted from EMG data collected at A. Low force, B. Medium force, C. High force. 

Results averaged across nine amputees performing six classes of hand movements at each force level and 

standard deviation is shown. Numbers represent the following:1) Thumb flexion; 2) Index flexion; 3) Fine 

pinch; 4) Tripod grip; 5) Hook grip (hook or snap); 6) Spherical grip (power). 

 

 

IV. DISCUSSION 

We have explored the important practical problem of developing robust PR-based system for the 

myoelectric control of hand prostheses in the presence of force variations. This problem is recognized 

as a major barrier to the widespread use of this kind of prostheses[13]. We investigated the impact of 

the force variations in the classification performance for a relatively large group of transradial 

amputees and evaluated the improvements that can be achieved when training with more than one 

force level. This evaluation comprehensively tested four classifiers and five feature extraction 

algorithms. In this regard, it must be noted that we also proposed a modified set of features (TD-PSD) 

that proved practically to be more robust to variations in the force level than other feature extraction 

methods. This is due to the fact that it is based on the orientation of the EMG power spectrum features 

rather than the amplitude of the EMG power, which is significantly affected by variations of force 

levels. When considering the level of classification errors and processing time, our results suggests 

that a PR system based on TD-PSD features, SR feature reduction and LDA as a classifier might 

provide a reliable control of hand prostheses with six movements for amputees with eight EMG 

channels. In the next subsections, we discuss the major contributions of this paper in details. 

A. Impact of the Signal Processing and Training Strategies on the Performance of PR-based 

EMG Control under Changes in Force Level. 

Experimental scheme 1 evaluated the performance when training and testing the classifiers with the 

same force level on a sample size of amputee people larger than previous studies[48]–[50]. As 

expected, the errors rates were low for all three force levels, as shown in Fig.5.Statistical tests showed 

that there were significant differences between the performance of TD-PSD and all other features. 

This is the typical setting used in the literature and this setting can be the missing part of the 

restrictions faced in real life resulting in the prostheses not having been applied to the real world yet. 



The results for the experimental scheme 2, which investigated the real life situation when the force 

level varies, showed that the error rates >60%, which suggest that the PR system alone, even with a 

robust feature extraction, may not be enough to solve this problem. Indeed, the high level of errors 

may make the system unusable. It is worth noting that the performance of TD-PSD was better than 

that of all FE methods in all the cases investigated. The highest error rates occur when the system was 

trained with low force and tested with unseen forces (Fig. 6).The experiment was conducted in single-

day sessions, and the amputees were not trained well to produce specific muscle patterns at different 

forces. The performance may be improved by training the amputees for several days to produce many 

forces for a specific movement.   

In order to solve the real practical problem illustrated in Fig. 6,we assessed the training strategy of 

including all force levels in the training set, aiming to reduce the effect of force variation, which was 

investigated in experimental scheme 3. Ideally, a system must be robust enough so that its 

performance when training with all forces and testing with different forces would be better than, or at 

least equal to, the performance that would be obtained when training and testing with forces 

individually. The results shown in Fig. 7 suggest that this training approach helped to reduce the error 

rates caused by force variation and bring the errors down to a near usable system (classification error 

<= 10%) with TD-PSD performing better than all FE methods for testing with the low, medium and 

high forces, as confirmed by statistical tests. This finding is constituent with the finding of [13] where 

training with all forces of EMG from intact-limbed subjects helped to reduce the errors to that of a 

usable system. 

In Fig. 7, the error rates for the high forces were much higher than the low and medium forces for all 

amputees. In general, high force is difficult to perform for an amputee since it requires a lot of effort 

from them. Additionally, producing a high force level and maintaining it for long time may produce 

fatigue, since the amputees have not used their stump muscles for long time. This may explain why 

the error rates were much higher for the high force levels than for the low and medium levels of force, 

in addition to the changes that the EMG signal undergoes with high force levels[24]. It is worth 

mentioning that TD-PSD achieved 0.3 ms window processing time which is faster than other methods 

which suggests its suitability for real time implementations. It may be also seen that the lowest error 



was when the system is trained with all forces and tested with low force. This may be helpful in the 

everyday scenario, since the amputee could use the prosthesis in two modes (the low and moderate 

force levels). 

Fig. 8 displayed the errors for experimental scheme 3 in a more comprehensive way to examine the 

errors for each individual amputee when training with all forces and testing with single force with 

TD-PSD and LDA. TR6 was the best performer when testing with medium and high forces while 

CG1 was the best performer when testing with low force. Moreover, TR7 achieved a relatively good 

performance compared to other amputees despite his vision problems that restricted his use of the VF. 

We found the performance of the 2 congenital amputees (CG1 and CG2) to be similar or comparable 

to that of traumatic amputees, unlike the findings of [49], [50] where the recruited traumatic 

transradial amputees had a performance better than the other two congenital amputees. This may be 

explained by the fact that CG1 and CG2 used a myoelectric prosthesis for around 8 years (Table 

1)which emphasises the effect of training on reproducing specific muscle patterns to improve 

performance. 

It can be seen in Fig. 7 that testing with high force was worse than testing with medium force or low 

force for all amputees. This finding is in agreement with [13], who found that the larger errors were 

achieved at higher force levels than those achieved in small force levels, based on EMG signals of 

normal subjects for multiple forces for nine classes of movements with eight electrodes. In this study, 

a similar finding to that of [13] has been revealed. However, it must be noted that we have verified 

this for a larger sample of nine amputees than previous articles. 

From examining the confusion matrices in Fig.9 (A), fine pinch and spherical grips are the 

movements with the highest errors. When testing with the medium force Fig.9 (B), the errors were in 

the aforementioned movements as well as hook grip. As for Fig.9(C), all the movements have an error 

rates around 20% apart from the thumb and tripod grip. It is worth noting that thumb flexion was one 

of the movements with low errors in all cases for all amputees which is constituent with the finding of 

[45]. 

As illustrated in Table 4, the classification performance of the DFT features was not as good as that of 

our proposed TD-PSD features. On the other hand, the processing time for DFT was 0.2 ms, which is 



slightly faster than the proposed TD-PSD (0.3 ms as shown in Table 3). The performance drop of the 

DFT on amputee datasets may be explained by the limitation that was acknowledged in [29]. The 

DFT FE requires specific configuration by which the EMG electrodes should be attached on a 

specified forearm muscles in order for the algorithm to work. When working with amputees, it is very 

difficult to locate the muscle locations on the stump. Moreover, He et al. investigated only grip and 

wrist movements, which are controlled by superficial muscles. In our study, we investigated finger, 

grip and wrist movements. Since thumb and index fingers are controlled by deep muscles in the 

forearm [45], this make it impossible to reproduce the configuration of He et al.[29] on amputee 

people. Additionally, the DFT method relies mainly on percentage of power or strength of muscles 

contraction along certain frequency bands in relation to the total power by all muscles, a technique 

that proved to perform well in terms of classification accuracies when tested on intact-limbed subjects 

[29]. However, when dealing with amputees, the degree of muscle power coordination between the 

different muscles may not be the most significant feature as factors like the level of amputation, the 

time since amputation, the innervation of these muscles and others can all significantly affect the 

performance of such a method. We hypothesize that this is what happened when we tested the method 

by He et al. on amputees as our results in Table. 4 show. In contrast, our method relies on the 

orientation of the power features extracted from individual muscles and a reference feature vectors 

extracted from the same muscles, rather than as a percentage of that the power produced by all other 

muscles, which in this case proved to be of significant importance to the amputees. 

As a final remark, it should also be noted that the experimental protocol of the current study focused 

on finger and grip movements, whereas He et al.[29] focused more on wrist movements. This may 

explain why DFT performance (the muscle coordination-based method) was not as good as our 

proposed TD-PSD. It is anticipated that the muscle coordination method in [29] may work well for 

gross-kind of movements such as wrist movements, rather than the more precise-controlled 

movements such as finger movements. 

B. Limitations and future work 

The study has a potential limitation that the analysis of the nine amputees EMG signals was 

performed offline and the amputees did not use a virtual environment or actuated prosthesis to 



perform the PR experiments. Another limitation is that no quantified information of force level was 

provided to the amputees during experiment. Further analyses are warranted in this research direction 

to perform real- time experiments with the transradial amputees. In addition, the use of an alternative 

method of contraction will be investigated by using ramp contractions instead of static contractions to 

see if they can help to reduce the effect of force variation. 

V. CONCLUSION 

The practical problem of force level variation with everyday use of the prosthesis was investigated for 

large number of amputees. Significant improvements of ≈ (6-8) % in the classification performance on 

average across all subjects and force levels when training with all forces were reported due to the use 

of TD-PSD features, which outperformed all feature extraction methods for all classifiers. Therefore, 

a major recommendation of this study is that it is important to take into account the effect of force 

change on the performance of multi-functional upper-limb prosthesis controlled by the EMG for both 

congenital and traumatic transradial amputees. This effect is important for non-amputee control 

subjects and even more for the amputees since many factors are changed after the amputation process, 

such as the loss of visual feedback and the loss of part of the muscle structure. The proposed feature 

extraction method achieved low levels of error and fast response time compared to other methods 

based on testing with EMG signals acquired from large number of amputees. TD-PSD can be a 

potential candidate to replace the existing FE methods to enable the clinical implementation of PR-

based systems for amputees' use. In addition, it is important to train the PR systems for controlling the 

prostheses with a variety of force levels to ensure a classification robust to the force variation. 
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List of figure captions 

Fig. 1  Block diagram of the proposed feature extraction process. 

Fig. 2 The surface electrodes locations for the amputees showing the left stump for CG1. 

Fig. 3 Amputee TR5 executing the protocol for recording different force levels. He used the VF and 

intact limb to produce the spherical grip, as it can be seen in the picture. 

Fig. 4 Single trial of one channel EMG signal for TR3 for different levels of contraction for the spherical 

grip gesture. A. Low force. B. Medium force. C. High force. 

Fig. 5 Average classification errors for nine amputees when training and testing the classifiers with the 

same force level (Experimental Scheme 1) with five feature sets and four classifiers (LDA, RF, 

NB and kNN). Standard deviations are shown with error bars. Ts denotes testing with a specific 

force. 

Fig. 6 Classification errors of nine amputees when training the classifier with one force and performing 

the testing with unseen force levels (Experimental Scheme 2). Standard deviation is shown with 

error bars. Tr denotes training with a specific force. 

Fig. 7 Classification errors for nine amputees when training with all force levels and testing the classifier 

with each level of the three forces (Experimental Scheme-3). Standard deviation is shown with 

error bars. Ts denotes testing with a specific force. 

Fig. 8 The results the experimental Scheme3 for nine amputees when training with all forces with TD-

PSD and LDA classifier. The mean of all amputees is shown and error bars represent standard 

deviation. 

Fig. 9 Confusion matrices while training the LDA classifier on the data from all forces and testing the 

classifier on TD-PSD features extracted from EMG data collected at A. Low force, B. Medium 

force, C. High force. Results averaged across nine amputees performing six classes of hand 

movements at each force level and standard deviation is shown. Numbers represent the 

following:1) Thumb flexion; 2) Index flexion; 3) Fine pinch; 4) Tripod grip; 5) Hook grip (hook 

or snap); 6) Spherical grip (power). 
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