5,338 research outputs found

    Galaxy Selection and Clustering and Lyman alpha Absorber Identification

    Full text link
    The effects of galaxy selection on our ability to constrain the nature of weak Ly\alpha absorbers at low redshift are explored. Current observations indicate the existence of a population of gas-rich, low surface brightness (LSB) galaxies, and these galaxies may have large cross sections for Ly\alpha absorption. Absorption arising in LSB galaxies may be attributed to HSB galaxies at larger impact parameters from quasar lines of sight, so that the observed absorption cross sections of galaxies may seem unreasonably large. Thus it is not possible to rule out scenarios where LSB galaxies make substantial contributions to Ly\alpha absorption using direct observations. Less direct tests, where observational selection effects are taken into account using simulations, should make it possible to determine the nature of Ly\alpha absorbers by observing a sample of ~100 galaxies around quasar lines of sight with well-defined selection criteria. Such tests, which involve comparing simulated and observed plots of the unidentified absorber fractions and absorbing galaxy fractions versus impact parameter, can distinguish between scenarios where absorbers arise in particular galaxies and those where absorbers arise in gas tracing the large scale galaxy distribution. Care must be taken to minimize selection effects even when using these tests. Results from such tests are likely to depend upon the limiting neutral hydrogen column density. While not enough data are currently available to make a strong conclusion about the nature of moderately weak absorbers, evidence is seen that such absorbers arise in gas that is around or between galaxies that are often not detected in surveys.Comment: 15 pages, 10 figures, accepted to the Astrophysical Journa

    The scatter and evolution of the global hot gas properties of simulated galaxy cluster populations

    Get PDF
    We use the cosmo-OWLS suite of cosmological hydrodynamical simulations to investigate the scatter and evolution of the global hot gas properties of large simulated populations of galaxy groups and clusters. Our aim is to compare the predictions of different physical models and to explore the extent to which commonly-adopted assumptions in observational analyses (e.g. self-similar evolution) are violated. We examine the relations between (true) halo mass and the X-ray temperature, X-ray luminosity, gas mass, Sunyaev-Zel'dovich (SZ) flux, the X-ray analogue of the SZ flux (YXY_X) and the hydrostatic mass. For the most realistic models, which include AGN feedback, the slopes of the various mass-observable relations deviate substantially from the self-similar ones, particularly at late times and for low-mass clusters. The amplitude of the mass-temperature relation shows negative evolution with respect to the self-similar prediction (i.e. slower than the prediction) for all models, driven by an increase in non-thermal pressure support at higher redshifts. The AGN models predict strong positive evolution of the gas mass fractions at low halo masses. The SZ flux and YXY_X show positive evolution with respect to self-similarity at low mass but negative evolution at high mass. The scatter about the relations is well approximated by log-normal distributions, with widths that depend mildly on halo mass. The scatter decreases significantly with increasing redshift. The exception is the hydrostatic mass-halo mass relation, for which the scatter increases with redshift. Finally, we discuss the relative merits of various hot gas-based mass proxies.Comment: 31 pages (21 before appendices), 19 figures, 12 tables, accepted by MNRAS after minor revisio

    High Metallicity Mg II Absorbers in the z < 1 Lyman alpha Forest of PKS 0454+039: Giant LSB Galaxies?

    Full text link
    We report the discovery of two iron-group enhanced high-metallicity Mg II absorbers in a search through 28 Lyman Alpha forest clouds along the PKS 0454+039 sight line. Based upon our survey and the measured redshift number densities of W_r(MgII) <= 0.3 A absorbers and Lyman Alpha absorbers at z ~ 1, we suggest that roughly 5% of Lyman Alpha absorbers at z < 1 will exhibit "weak" Mg II absorption to a 5-sigma W_r(2796) detection limit of 0.02 A. The two discovered absorbers, at redshifts z = 0.6248 and z = 0.9315, have W_r(Lya) = 0.33 and 0.15 A, respectively. Based upon photoionization modeling, the H I column densities are inferred to be in the range 15.8 <= log N(HI) <= 16.8 cm^-2. For the z = 0.6428 absorber, if the abundance pattern is solar, then the cloud has [Fe/H] > -1; if its gas-phase abundance follows that of depleted clouds in our Galaxy, then [Fe/H] > 0 is inferred. For the z = 0.9315 absorber, the metallicity is [Fe/H] > 0, whether the abundance pattern is solar or suffers depletion. Imaging and spectroscopic studies of the PKS 0454+039 field reveal no candidate luminous objects at these redshifts. We discuss the possibility that these Mg II absorbers may arise in the class of "giant" low surface brightness galaxies, which have [Fe/H] >= -1, and even [Fe/H] >= 0, in their extended disks. We tentatively suggest that a substantial fraction of these "weak" Mg II absorbers may select low surface brightness galaxies out to z ~ 1.Comment: Accepted The Astrophysical Journal; 25 pages; 6 encapsulated figure

    The Population of Weak Mg II Absorbers I. A Survey of 26 QSO HIRES/Keck Spectra

    Full text link
    We present a search for "weak" MgII absorbers [those with W_r(2796) < 0.3 A in the HIRES/Keck spectra of 26 QSOs. We found 30, of which 23 are newly discovered. The spectra are 80% complete to W_r(2796) = 0.02 A and have a cumulative redshift path of ~17.2 for the redshift range 0.4 < z < 1.4. The number of absorbers per unit redshift, dN/dz, is seen to increase as the equivalent width threshold is decreased; we obtained dN/dz = 1.74+/-0.10 for our 0.02 <= W_r(2796) < 0.3 A sample. The equivalent width distribution follows a power law with slope -1.0; there is no turnover down to W_r(2796) = 0.02 A at = 0.9. Weak absorbers comprise at least 65% of the total MgII absorption population, which outnumbers Lyman limit systems (LLS) by a factor of 3.8+/-1.1; the majority of weak MgII absorbers must arise in sub-LLS environments. Tentatively, we predict that ~5% of the Lyman-alpha forest clouds with W_r(1215) > 0.1 A will have detectable MgII absorption to W_r,min(2796) = 0.02 A and that this is primarily a high-metallicity selection effect (Z/Z_sun] > -1). This implies that MgII absorbing structures figure prominently as tracers of sub-LLS environments where gas has been processed by stars. We compare the number density of W_r(2796) > 0.02 A absorbers with that of both high and low surface brightness galaxies and find a fiducial absorber size of 35h^-1 to 63h^-1 kpc, depending upon the assumed galaxy population and their absorption properties. The individual absorbing "clouds" have W_r(2796) <= 0.15 A and their narrow (often unresolved) line widths imply temperatures of ~25,000 K. We measured W_r(1548) from CIV in FOS/HST archival spectra and, based upon comparisons with FeII, found a range of ionization conditions (low, high, and multi-phase) in absorbers selected by weak MgII.Comment: Accepted Version: 43 pages, PostScript figures embedded; accepted to ApJ; updated version includes analysis of CIV absorptio

    Metallicity Evolution in the Early Universe

    Get PDF
    Observations of the damped Lya systems provide direct measurements on the chemical enrichment history of neutral gas in the early universe. In this Letter, we present new measurements for four damped Lya systems at high redshift. Combining these data with [Fe/H] values culled from the literature, we investigate the metallicity evolution of the universe from z~1.5-4.5. Contrary to our expectations and the predictions of essentially every chemical evolution model, the N(HI)-weighted mean [Fe/H] metallicity exhibits minimal evolution over this epoch. For the individual systems, we report tentative evidence for an evolution in the unweighted [Fe/H] mean and the scatter in [Fe/H] with the higher redshift systems showing lower scatter and lower typical [Fe/H] values. We also note that no damped Lya system has [Fe/H] < -2.7 dex. Finally, we discuss the potential impact of small number statistics and dust on our conclusions and consider the implications of these results on chemical evolution in the early universe.Comment: 6 pages, 2 encapsulated figures, Latex2e, uses emulateapj.sty and onecolfloat.sty. Accepted for publication in ApJ Letters: Feb 28, 200

    Distribution of Damped Lyman-alpha Absorbers in a Lambda Cold Dark Matter Universe

    Full text link
    We present the results of a numerical study of a galactic wind model and its implications on the properties of damped Lyman-alpha absorbers (DLAs) using cosmological hydrodynamic simulations. We vary both the wind strength and the internal parameters of the the wind model in a series of cosmological SPH simulations that include radiative cooling and heating by a UV background, star formation, and feedback from supernovae and galactic winds. To test our simulations, we examine the DLA `rate-of-incidence' as a function of halo mass, galaxy apparent magnitude, and impact parameter. We find that the statistical distribution of DLAs does not depend on the exact values of internal numerical parameters that control the decoupling of hydrodynamic forces when the gas is ejected from starforming regions. The DLA rate-of-incidence in our simulations at z=3 is dominated by the faint galaxies with apparent magnitude R_AB < 25.5. However, interestingly in a `strong wind' run, the differential distribution of DLA sight-lines is peaked at Mhalo = 10^{12} Msun/h (R_AB~27), and the mean DLA halo mass is Mmean=10^{12.4} Msun/h (R_AB ~ 26). These mass-scales are much larger than those if we ignore winds, because galactic wind feedback suppresses the DLA cross section in low-mass halos and increases the relative contribution to the DLA incidence from more massive halos. The DLAs in our simulations are more compact than the present-day disk galaxies, and the impact parameter distribution is very narrow unless we limit the search for the host galaxy to only bright LBGs. The comoving number density of DLAs is higher than that of LBGs down to R_AB=30 mag if the physical radius of each DLA is smaller than 5 kpc/h_70. We discuss conflicts between current simulations and observations, and potential problems with simulations based on the CDM model.Comment: 37 pages, 11 figures. Accepted to ApJ. Additional numerical tests of the internal parameters of the galactic wind model are presente

    Small scale structure in diffuse molecular gas from repeated FUSE and visible spectra of HD 34078

    Get PDF
    We present preliminary results from an ongoing program devoted to a study of small scale structure in the spatial distribution of molecular gas. Our work is based on multi-epoch FUSE and visible observations of HD34078. A detailed comparison of H2, CH and CH+ absorption lines is performed. No short term variations are seen (except for highly excited H2) but long-term changes in N(CH) are clearly detected when comparing our data to spectra taken about 10 years ago.Comment: 4 pages, 2 figures, To appear in the Proceedings of the XVII IAP Colloquium "Gaseous Matter in Galaxies and Intergalactic Space

    Damped Lyman alpha Absorbing Galaxies At Low Redshifts z<1 From Hierarchical Galaxy Formation Models

    Full text link
    We investigate Damped Ly-alpha absorbing galaxies (DLA galaxies) at low redshifts z<1 in the hierarchical structure formation scenario to clarify the nature of DLA galaxies because observational data of such galaxies mainly at low redshifts are currently available. We find that our model well reproduces distributions of fundamental properties of DLA galaxies such as luminosities, column densities, impact parameters obtained by optical and near-infrared imagings. Our results suggest that DLA systems primarily consist of low luminosity galaxies with small impact parameters (typical radius about 3 kpc, surface brightness from 22 to 27 mag arcsec^{-2}) similar to low surface brightness (LSB) galaxies. In addition, we investigate selection biases arising from the faintness and from the masking effect which prevents us from identifying a DLA galaxy hidden or contaminated by a point spread function of a background quasar. We find that the latter affects the distributions of DLA properties more seriously rather than the former, and that the observational data are well reproduced only when taking into account the masking effect. The missing rate of DLA galaxies by the masking effect attains 60-90 % in the sample at redshift 0<z<1 when an angular size limit is as small as 1 arcsec. Furthermore we find a tight correlation between HI mass and cross section of DLA galaxies, and also find that HI-rich galaxies with M(HI) \sim 10^{9} M_sun dominate DLA systems. These features are entirely consistent with those from the Arecibo Dual-Beam Survey which is a blind 21 cm survey. Finally we discuss star formation rates, and find that they are typically about 10^{-2} M_sun yr^{-1} as low as those in LSB galaxies.Comment: 21 pages, 13 figures, Accepted for publication in Astrophsical Journa
    • …
    corecore