269 research outputs found

    Cerebral Blood Flow Measurement Using fMRI and PET: A Cross-Validation Study

    Get PDF
    An important aspect of functional magnetic resonance imaging (fMRI) is the study of brain hemodynamics, and MR arterial spin labeling (ASL) perfusion imaging has gained wide acceptance as a robust and noninvasive technique. However, the cerebral blood flow (CBF) measurements obtained with ASL fMRI have not been fully validated, particularly during global CBF modulations. We present a comparison of cerebral blood flow changes (ΔCBF) measured using a flow-sensitive alternating inversion recovery (FAIR) ASL perfusion method to those obtained using H215O PET, which is the current gold standard for in vivo imaging of CBF. To study regional and global CBF changes, a group of 10 healthy volunteers were imaged under identical experimental conditions during presentation of 5 levels of visual stimulation and one level of hypercapnia. The CBF changes were compared using 3 types of region-of-interest (ROI) masks. FAIR measurements of CBF changes were found to be slightly lower than those measured with PET (average ΔCBF of 21.5 ± 8.2% for FAIR versus 28.2 ± 12.8% for PET at maximum stimulation intensity). Nonetheless, there was a strong correlation between measurements of the two modalities. Finally, a t-test comparison of the slopes of the linear fits of PET versus ASL ΔCBF for all 3 ROI types indicated no significant difference from unity (P > .05)

    Accelerating Quantitative Susceptibility Mapping using Compressed Sensing and Deep Neural Network

    Full text link
    Quantitative susceptibility mapping (QSM) is an MRI phase-based post-processing method that quantifies tissue magnetic susceptibility distributions. However, QSM acquisitions are relatively slow, even with parallel imaging. Incoherent undersampling and compressed sensing reconstruction techniques have been used to accelerate traditional magnitude-based MRI acquisitions; however, most do not recover the full phase signal due to its non-convex nature. In this study, a learning-based Deep Complex Residual Network (DCRNet) is proposed to recover both the magnitude and phase images from incoherently undersampled data, enabling high acceleration of QSM acquisition. Magnitude, phase, and QSM results from DCRNet were compared with two iterative and one deep learning methods on retrospectively undersampled acquisitions from six healthy volunteers, one intracranial hemorrhage and one multiple sclerosis patients, as well as one prospectively undersampled healthy subject using a 7T scanner. Peak signal to noise ratio (PSNR), structural similarity (SSIM) and region-of-interest susceptibility measurements are reported for numerical comparisons. The proposed DCRNet method substantially reduced artifacts and blurring compared to the other methods and resulted in the highest PSNR and SSIM on the magnitude, phase, local field, and susceptibility maps. It led to 4.0% to 8.8% accuracy improvements in deep grey matter susceptibility than some existing methods, when the acquisition was accelerated four times. The proposed DCRNet also dramatically shortened the reconstruction time by nearly 10 thousand times for each scan, from around 80 hours using conventional approaches to only 30 seconds.Comment: 10 figure

    Using A One-Class Compound Classifier To Detect In-Vehicle Network Attacks

    Get PDF
    The Controller Area Network (CAN) in vehicles provides serial communication between electronic control units that manage en- gine, transmission, steering and braking. Researchers have recently demonstrated the vulnerability of the network to cyber-attacks which can manipulate the operation of the vehicle and compromise its safety. Some proposals for CAN intrusion detection systems, that identify attacks by detecting packet anomalies, have drawn on one-class classi cation, whereby the system builds a decision surface based on a large number of normal instances. The one-class approach is discussed in this paper, together with initial results and observations from implementing a classi er new to this eld. The Compound Classier has been used in image processing and medical analysis, and holds advantages that could be relevant to CAN intrusion detection.<br/

    Using BOLD-fMRI to Compute the Respiration Volume per Time (RTV) and Respiration Variation (RV) with Convolutional Neural Networks (CNN) in the Human Connectome Development Cohort

    Full text link
    In many fMRI studies, respiratory signals are unavailable or do not have acceptable quality. Consequently, the direct removal of low-frequency respiratory variations from BOLD signals is not possible. This study proposes a one-dimensional CNN model for reconstruction of two respiratory measures, RV and RVT. Results show that a CNN can capture informative features from resting BOLD signals and reconstruct realistic RV and RVT timeseries. It is expected that application of the proposed method will lower the cost of fMRI studies, reduce complexity, and decrease the burden on participants as they will not be required to wear a respiratory bellows.Comment: 6 pages, 5 figure

    Distinct characteristics and severity of brain magnetic resonance imaging lesions in women and men with multiple sclerosis assessed using verified texture analysis measures

    Get PDF
    Background and goalIn vivo characterization of brain lesion types in multiple sclerosis (MS) has been an ongoing challenge. Based on verified texture analysis measures from clinical magnetic resonance imaging (MRI), this study aimed to develop a method to identify two extremes of brain MS lesions that were approximately severely demyelinated (sDEM) and highly remyelinated (hREM), and compare them in terms of common clinical variables.MethodTexture analysis used an optimized gray-level co-occurrence matrix (GLCM) method based on FLAIR MRI from 200 relapsing-remitting MS participants. Two top-performing metrics were calculated: texture contrast and dissimilarity. Lesion identification applied a percentile approach according to texture values calculated: ≤ 25 percentile for hREM and ≥75 percentile for sDEM.ResultsThe sDEM had a greater total normalized volume yet smaller average size, and worse MRI texture than hREM. In lesion distribution mapping, the two lesion types appeared to overlap largely in location and were present the most in the corpus callosum and periventricular regions. Further, in sDEM, the normalized volume was greater and in hREM, the average size was smaller in men than women. There were no other significant results in clinical variable-associated analyses.ConclusionPercentile statistics of competitive MRI texture measures may be a promising method for probing select types of brain MS lesion pathology. Associated findings can provide another useful dimension for improved measurement and monitoring of disease activity in MS. The different characteristics of sDEM and hREM between men and women likely adds new information to the literature, deserving further confirmation

    Saguenay Youth Study : a multi-generational approach to studying virtual trajectories of the brain and cardio-metabolic health

    Get PDF
    This paper provides an overview of the Saguenay Youth Study (SYS) and its parental arm. The overarching goal of this effort is to develop trans-generational models of developmental cascades contributing to the emergence of common chronic disorders, such as depression, addictions, dementia and cardio-metabolic diseases. Over the past 10 years, we have acquired detailed brain and cardio-metabolic phenotypes, and genome-wide genotypes, in 1029 adolescents recruited in a population with a known genetic founder effect. At present, we are extending this dataset to acquire comparable phenotypes and genotypes in the biological parents of these individuals. After providing conceptual background for this work (transactions across time, systems and organs), we describe briefly the tools employed in the adolescent arm of this cohort and highlight some of the initial accomplishments. We then outline in detail the phenotyping protocol used to acquire comparable data in the parents

    Correcting for T1 bias in Magnetization Transfer Saturation (MTsat) Maps Using Sparse-MP2RAGE

    Full text link
    Purpose: Magnetization transfer saturation (MTsat) mapping is commonly used to examine the macromolecular content of brain tissue. This study compared variable flip angle (VFA) T1 mapping against compressed sensing (cs)MP2RAGE T1 mapping for accelerating MTsat imaging. Methods: VFA, MP2RAGE and csMP2RAGE were compared against inversion recovery (IR) T1 in a phantom at 3 Tesla. The same 1 mm VFA, MP2RAGE and csMP2RAGE protocols were acquired in four healthy subjects to compare the resulting T1 and MTsat. Bloch-McConnell simulations were used to investigate differences between the phantom and in vivo T1 results. Finally, ten healthy controls were imaged twice with the csMP2RAGE MTsat protocol to quantify repeatability. Results: The MP2RAGE and csMP2RAGE protocols were 13.7% and 32.4% faster than the VFA protocol, respectively. All approaches provided accurate T1 values (<5% difference) in the phantom, but the accuracy of the T1 times was more impacted by differences in T2 for VFA than for MP2RAGE. In vivo, VFA generated longer T1 times than MP2RAGE and csMP2RAGE. Simulations suggest that the bias in the T1 values between VFA and IR-based approaches (MP2RAGE and IR) could be explained by the MT-effects from the inversion pulse. In the test-retest experiment, we found that the csMP2RAGE has a minimum detectable change of 3% for T1 mapping and 7.9% for MTsat imaging. Conclusions: We demonstrated that csMP2RAGE can be used in place of VFA T1 mapping in an MTsat protocol. Furthermore, a shorter scan time and high repeatability can be achieved using the csMP2RAGE sequence.Comment: 23 pages, 7 figures, 2 table

    Optimization of acquisition parameters for cortical inhomogeneous magnetization transfer (ihMT) imaging using a rapid gradient echo readout

    Full text link
    Purpose: Imaging biomarkers with increased myelin specificity are needed to better understand the complex progression of neurological disorders. Inhomogeneous magnetization transfer (ihMT) imaging is an emergent technique that has a high degree of specificity for myelin content but suffers from low signal-to-noise ratio (SNR). This study used simulations to determine optimal sequence parameters for ihMT imaging for use in high-resolution cortical mapping. Methods: MT-weighted cortical image intensity and ihMT SNR were simulated using modified Bloch equations for a range of sequence parameters. The acquisition time was limited to 4.5 min/volume. A custom MT-weighted RAGE sequence with center-out k-space encoding was used to enhance SNR at 3 Tesla. Pulsed MT imaging was studied over a range of saturation parameters and the impact of the turbo-factor on effective ihMT was investigated. 1 mm isotropic ihMTsat maps were generated in 25 healthy adults using an optimized protocol. Results: Greater SNR was observed for larger number of bursts consisting of 6-8 saturation pulses each, combined with a high readout turbo-factor. However, that protocol suffered from a point spread function that was more than twice the nominal resolution. For high-resolution cortical imaging, we selected a protocol with a higher effective resolution at the cost of a lower SNR. We present the first group-average ihMTsat whole-brain map at 1 mm isotropic resolution. Conclusion: This study presents the impact of saturation and excitation parameters on ihMTsat SNR and resolution. We demonstrate the feasibility of high-resolution cortical myelin imaging using ihMTsat in less than 20 minutes

    Development of functional connectivity during adolescence:A longitudinal study using an action-observation paradigm

    Get PDF
    Successful interpersonal interactions rely on an ability to read the emotional states of others and to modulate one's own behavior in response. The actions of others serve as valuable social stimuli in this respect, offering the observer an insight into the actor's emotional state. Social cognition continues to mature throughout adolescence. Here we assess longitudinally the development of functional connectivity during early adolescence within two neural networks implicated in social cognition: one network of brain regions consistently engaged during action observation and another one associated with mentalizing. Using fMRI, we reveal a greater recruitment of the social-emotional network during the observation of angry hand actions in male relative to female adolescents. These findings are discussed in terms of known sex differences in adolescent social behavior
    corecore