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Background and goal: In vivo characterization of brain lesion types in multiple

sclerosis (MS) has been an ongoing challenge. Based on verified texture analysis

measures from clinical magnetic resonance imaging (MRI), this study aimed

to develop a method to identify two extremes of brain MS lesions that were

approximately severely demyelinated (sDEM) and highly remyelinated (hREM), and

compare them in terms of common clinical variables.

Method: Texture analysis used an optimized gray-level co-occurrence matrix

(GLCM)method based on FLAIRMRI from 200 relapsing-remitting MS participants.

Two top-performing metrics were calculated: texture contrast and dissimilarity.

Lesion identification applied a percentile approach according to texture values

calculated: ≤25 percentile for hREM and ≥75 percentile for sDEM.

Results: The sDEM had a greater total normalized volume yet smaller average

size, and worse MRI texture than hREM. In lesion distribution mapping, the two

lesion types appeared to overlap largely in location and were present the most in

the corpus callosum and periventricular regions. Further, in sDEM, the normalized

volumewas greater and in hREM, the average sizewas smaller inmen thanwomen.

There were no other significant results in clinical variable-associated analyses.

Conclusion: Percentile statistics of competitive MRI texture measures

may be a promising method for probing select types of brain MS lesion

pathology. Associated findings can provide another useful dimension for

improved measurement and monitoring of disease activity in MS. The di�erent

characteristics of sDEM and hREM between men and women likely adds new

information to the literature, deserving further confirmation.
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1. Introduction

Multiple sclerosis (MS) is a complex and highly heterogeneous

disease with unpredictable outcome. While the exact mechanisms

are still unclear, focal lesions remain to be important signatures

of MS pathology, especially in the relapsing-remitting subtype

(RRMS) (1). Further, the lesions are considerable different

even within an individual regarding the type of pathological

processes involved, such as demyelination and remyelination (2).

Understanding the degree of injury and repair associated with

the lesions would be invaluable for optimal disease evaluation

and management. However, characterization of lesion severity in

vivo is challenging, highlighting a critical need for development of

new methods.

Magnetic resonance imaging (MRI) is a promising method

for assessing neuropathology. Along with data science methods,

MRI has shown a considerable potential for identifying lesion

characteristics in MS (3–5). Currently much effort is associated

with advanced MRI. Based on macro- and micro-scale measures of

tissue damage using diffusion MRI, one study differentiated brain

MS lesions into two types using a k-means clustering algorithm

and showed that lesions with greater diffusion changes correlated

with worse clinical outcomes (4). Likewise, using MR Spectroscopy

and diffusion imaging, another study evaluated a group of RRMS

participants. By dividing brain MS lesions into mild and severe

types based on median radial diffusivity (RD), they found that

only the mild lesions showed metabolite changes in favor of

repair (5). However, advanced MRI do not always outperform

conventional MRI measures. In assessing the change of lesions as

an indicator of neuroprotection and repair, a study investigated

magnetization transfer ratio and mean diffusivity, as well as

conventional MRI indices such as signal intensity and T1/T2 ratio,

assisted by a percentile categorization approach. Through mixed

effects modeling, this study discovered that the 25th percentile

(25%ile) of normalized proton density-weighted signal intensity

had the greatest sensitivity in sample size estimation among all

proposed imaging measures (6). Furthermore, advancedMRI is not

a part of routine practice in many clinical settings.

Conventional MRI is widely available. While pathologically

non-specific in MS (7), conventional MRI contains rich textural

information, making it a promising candidate for improved

measurement of lesion severity. Visually, the extent of T1

hypointense lesions reflects the persistence of tissue damage in

MS (8). Quantitatively, measures of the “texture” of conventional

MRI detect subtle structural abnormalities invisible to human

eyes (9). Examples include characterization of brain white matter

remodeling following traumatic brain injury (10), and separation

of transient and persistent T1 hypointense lesions at onset in

MS (11). In addition, based on texture analysis using a localized

gray level co-occurrence matrix (GLCM) method and statistical

machine learning using T2-weighted MRI of post-mortem brain

samples, a prior study verified that texture metrics performed the

best in classifying brain MS pathologies as compared to diffusion

fractional anisotropy (FA) and magnetization transfer ratio (MTR)

(12). Nonetheless, a criterion for identifying lesions of injury or

repair in MS is still lacking in clinical imaging. Further, several

demographic and clinical variables have shown the link to disease

severity, such as older age and male sex to worse disease outcome

(13, 14). Females are also evidenced to remyelinatemore thanmales

in MS (15, 16). However, the relationship between MRI-defined

lesion severity and clinical variables is unclear.

The goal of this study was to identify the de- and re-myelination

types of brain MS lesions in living participants using histology-

verified MRI texture measures. The specific aims were to: (1)

conduct whole brain MRI texture analysis in RRMS using an

optimized GLCM technique; (2) classify the identified brain MS

lesions in MRI into 2 extreme types of injury and repair including

de- and re-myelination using a percentile ranking approach; and

(3) evaluate differences between lesion types and their relationships

with common demographic and clinical variables.

2. Materials and methods

2.1. Participants

This was a retrospective single-site study using data from a

pilot clinical trial of domperidone as a candidate repair therapy in

RRMS (clinicaltrials.gov; Identifier: NCT02493049). Recruitment

occurred from November 2015 to January 2019, where 234

participants had complete screening. All of these individuals

were under regular treatment with one of the approved disease

modifying therapies (DMTs), and each of them had a clinically

indicated brainMRI to screen for gadolinium-enhancing lesions for

trial eligibility. After the screening brain MRI, eligible participants

were randomized into one of the two treatment groups of the

clinical trial, the details of which however were outside of the scope

of this work. The current study was cross-sectional that focused

only on the screening data acquired from a convenient sample

of 200 participants (the first available individuals, one MRI per

individual); 17 of them had at least one gadolinium-enhancing

lesion on the screening brain MRI. This study was approved by

the Institutional Ethics Board, and all participants provided written

informed consent.

2.2. Imaging protocol

All MR images were acquired at a 3T scanner (Discovery750,

GE Healthcare, Milwaukee, USA). The MRI protocol included

clinical MRI involving T1-weighted and fluid-attenuated inversion

recovery (FLAIR) images. Acquisition of T1-weighted MRI used

a gradient recalled sequence, with the following parameters:

repetition time (TR)/echo time (TE) = 8.1/3.1ms, field of view

(FOV)= 250× 250 mm2, matrix= 256× 256, and slice thickness

= 1mm. FLAIR MRI acquisition used a spin echo sequence, with

TR/TE = 7,000/128ms, FOV = 240 × 240 mm2, matrix = 512

× 512, and slice thickness = 1mm. The imaging protocol also

included other anatomical and advanced MRI sequences but were

not the focus of the current study.

2.3. Image preparation

The MRI scans underwent several pre-processing steps to

improve quality and uniformity. The process started with brain
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extraction, followed by linear co-registration from FLAIR to T1-

weighted MRI, using the FSL software (Oxford, UK). The next step

was noise reduction done using the ImageJ software (version 1.50i,

NIH, USA), which involved median and mean filtering to remove

salt and pepper and Gaussian noise, respectively, as commonly seen

in MRI (17). The last step was signal intensity normalization to

the range 0–255, using a customized coding program developed in-

house.

2.4. Lesion segmentation

Focal lesions were identified using an automatic toolbox known

as lesion segmentation tool (LST, v3.0.0) built in the software

SPM12 (18). Lesion detection used the co-registered T1-weighted

and FLAIR MRI scans. Subsequently, all lesion regions of interest

(ROIs) were reviewed and manually corrected where applicable.

In particular, lesions with pixels overlapping with the cerebral

ventricles were adjusted to minimize partial volume effect or other

undesired artifacts (19). For similar reasons, lesions with an area

smaller than 5 pixels (∼5 mm2) were excluded (Figures 1, 2).

2.5. Image texture analysis

Texture analysis employed the prepared FLAIR images where

lesions were most distinguishable. Texture calculation used the

GLCM method based on an optimized sliding-window approach.

The GLCM evaluates the occurrence frequency of image pixels

located in a certain distance and orientation relative to the

neighboring pixels (20). Prior research showed that a distance

of 1 (one) pixel was ideal for detecting fine image texture (21),

and the average texture from all 4 common directions (0◦, 45◦,

90◦, or 135◦) of GLCM demonstrated the most promise in

classifying lesion types (12, 22). Therefore, the above settings

were used in the current study. The GLCM analysis focused on

2 measures: texture contrast and dissimilarity, which showed the

best performance in classifying de- and re-myelinated lesions in

brain white matter using histology-informed conventional MRI

(12). Texture contrast was a measure of local variation in gray-

level intensity, highlighting tissue coarseness. Texture dissimilarity

computed the difference between gray-level pairs, indicating tissue

heterogeneity. These measures were calculated from each sliding

window sized 3 by 3. Iterating this process through the whole

image provided the corresponding texture maps (Figures 1, 2). The

GLCM analysis used the scikit-image library implementation in

Python (version 2.7).

2.6. Lesion type definition

Classifying lesion types used a percentile thresholding

approach. This was based on prior evidence suggesting that

the coarseness of MRI texture was significantly greater in MS

lesions with tissue damage than those with repair (11, 23).

Further, to maximize understanding of texture differences, this

study considered two lesion types expected to have the highest

differences in tissue structure: severely demyelinated (sDEM),

and highly remyelinated (hREM). Lesion texture maps from

texture contrast and dissimilarity across all 200 participants were

computed. Image texture map averaged from all four directions

was derived per feature, and the mean texture value per lesion was

used for percentile analysis in categorizing lesion types. Lesions

with mean texture values ranked ≥75%ile were considered sDEM,

and ≤25%ile as hREM.

2.7. Lesion type analysis

2.7.1. Lesion size-based analysis
The average lesion size per type was measured firstly within a

participant and then across participants. The calculation followed

this equation: sum of mean lesion size per participant/total

participants involved, where the mean lesion size in a participant

was done by: sum of lesion area per type/number of lesions of

the type in the participant. Additionally, the combined volume of

each lesion type per subject was computed, which was normalized

by the grand total lesion volume of the corresponding subject

to account for lesion volume differences between participants.

This total normalized volume of sDEM or hREM was used in

statistical analyses.

2.7.2. Lesion texture-based analysis
The mean texture value of each lesion type per subject

was evaluated. In addition, based on the texture of individual

lesions, principal component analysis (PCA) was performed to

further explore the roles and relationships of the texture variables

computed. This step took a correlation analysis approach. It

indicated if the PCA variables (texture contrast and dissimilarity)

were positively, negatively, or not correlated based on the location

of the variables in a quadrant: grouped together, in opposing

quadrants, or orthogonal to each other, respectively. Further, the

contribution of each variable to the first and second PCs was

calculated to evaluate how each measure reflected the degree of the

underlying pathology.

2.7.3. Lesion distribution mapping
To understand the location characteristics of the identified

lesion types in the brain, we generated lesion probability maps.

Specifically, following brain extraction, the T1-weighted MRI of

each subject was both linear (affine)- and non-linear- registered to

the MNI152 1-mm T1-weighted MRI template as a common space

(24). The resulting transformations from these co-registration

steps were then applied with nearest neighbor interpolation to

the respective T1-aligned lesion masks (Figure 3). In this way,

the lesion masks from each subject were aligned pixel-wise with

the MNI space. Averaging the masks across subjects for each

lesion type generated the corresponding lesion probability maps.

Finally, a threshold of 0.1 was applied to the masks such that

lesions with a probability ≥10% was kept to improve reliability. In

addition, lesion probability per type was explored by brain region,

especially the white matter where MS lesions were most identifiable

in brain MRI. The areas included: periventricular white matter,
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FIGURE 1

Example MR images and the texture feature maps from one RRMS participant examined in this study. Shown are a FLAIR image (A) as well as the

resulting texture contrast (B) and texture dissimilarity (C) maps with corresponding lesions identified as severely demyelinated (red) or highly

remyelinated (blue). Brighter signal indicates greater texture value and more heterogeneity in the maps. The participant has a disability score of 2.5

and disease duration of 17.1 years.

FIGURE 2

Example MR images and the texture feature maps from another RRMS participant examined in this study. Shown are a FLAIR image (A) as well as the

resulting texture contrast (B) and texture dissimilarity (C) maps with corresponding lesions identified as severely demyelinated (red) or highly

remyelinated (blue). Brighter signal indicates greater texture value and more heterogeneity in the maps. The participant has a disability score of 1.5

and disease duration of 9.5 years.

deep white matter, and corpus callosum. The corresponding area

masks including lateral ventricles and brain white matter were

extracted using established atlases in FSL. Subsequently, the mask

of lateral ventricles were dilated with a disk size of 10mm as

indicated previously (25). Subtracting the lateral ventricle mask

from its dilated version provided the periventricular white matter

mask. The deep white matter mask was derived by subtracting

the periventricular white matter mask from the eroded brain

white matter mask with a kernel size of 1mm (26). The overall

distribution probability of lesions in an area per type was calculated

as a ratio of the probability averaged across relevant image slices to

the area volume for normalization purposes.

2.8. Relationship between lesion type and
clinical variables

To explore the clinical relevance of the identified lesion types,

we compared the average size and total normalized volume of

each lesion type between sexes, and between younger and older

groups both independently and within individual sex groups. The

age groups were divided using a similar percentile approach.

Participants with an age ≤25%ile were classified as younger

and ≥75%ile as older. Further, the relationship between the

aforementioned imagingmeasures per lesion type and other clinical

measures including disease duration, expanded disability status

scale (EDSS) score at screening, use of DMTs including high vs.

moderate efficacy DMTs were also assessed.

2.9. Statistical analysis

All statistical analyses used R (version 3.6.3) (27). Data

normality assessments employed the Shapiro-Wilk test. Outcome

comparisons between two groups used the Wilcoxon signed-

rank test, including comparisons between lesion types and

between clinical variables. Comparison on the probability of

lesion distribution between different brain areas used the non-

parametric Kruskal-Wallis test. Further, relationship assessment

between imaging and clinical measures applied the Pearson

correlation for continuous variables, and Spearman Correlation for
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FIGURE 3

Lesion distribution map calculation. The left panel shows example FLAIR lesions segmented initially (A), with lesion type identification (B), and

overlaid on a corresponding T1-weighted MRI co-registered to a common space [MNI152 1mm T1 template, (C)]. The middle panel shows example

FLAIR lesions co-registered to the MNI template from individual participants per lesion type (D). Finally, the right panel shows the eventual lesion

masks averaged across participants following thresholding per lesion type (E). Note: red represents the severely demyelinated lesions (sDEM) and

blue refers to highly remyelinated lesions (hREM).

categorical variables such as EDSS. In all analyses, a p < 0.05 was

considered significant.

3. Results

3.1. Sample characteristics

There were 5,140 lesions evaluated in total from the 200 RRMS

participants (148 females). Lesion size ranged 5–342 mm2. Of

all the participants, the EDSS ranged 0–6.5, and disease duration

ranged 1.4–35.6 years. Participant age ranged 20.4 to 60.3 years,

and it was 20.4–60.3 years for women and 21.0–60.0 years for men

(Table 1). All participants were under regular clinical management

including treatment with up to ten different DMTs, such as

dimethyl fumarate, fingolimod, glatiramer acetate, interferon-beta,

and teriflunomide as the most common ones.

3.2. Lesion type outcomes

Based on our percentile-thresholding approach, 193 of 200

RRMS participants (96.5%) had both sDEM and hREM detected;

143 were women. Four of the 200 participants had only

sDEM lesions (all women), and three had only hREM lesions

(one woman).

TABLE 1 Demographic characteristics of the RRMS participants at

screening.

Variable Mean (range) SD

Age (years) 44.4 (20.4–60.3) 8.8

Sex (female/male) 148/52 –

Lesion volume (mm3) 2290 (13.4–24727.0) 3216.0

Lesion number all types 25.50 (1–190) 24.60

sDEM lesions 27.82 (0–59) 31.21

hREM lesions 26.92 (0–66) 28.71

EDSS 2.25 (0.0–6.5) 1.51

Disease duration 11.75 (1.40–35.60) 7.28

3.2.1. The sDEM had a smaller average size but
larger total normalized volume than hREM

The average lesion size differed between participants in each

lesion type. It ranged 5.72–25.11 mm2 for sDEM and 5.4–119.8

mm2 for hREM across the corresponding cohorts. Wilcoxon

signed-rank test revealed that the sDEM possessed a significantly

smaller average size than the hREM (350.42 mm2 vs. 660.17 mm2,

p < 0.001). Conversely, the total normalized lesion volume was

significantly larger in sDEM than hREM (78.24% vs. 71.34%, p <

0.001) (Figure 4).
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FIGURE 4

Average size and normalized volume of the two identified lesion types across all RRMS participants. Shown are violin plots of the mean, standard

deviation, and range (density) of the lesion values. sDEM, severely demyelinated lesions; hREM, highly remyelinated lesions. ***p < 0.001.

3.2.2. Texture contrast and dissimilarity
contributed similarly in classifying sDEM and
hREM

The mean (standard deviation) texture contrast for sDEM and

hREM was 38.59 (1.42) and 21.66 (2.27), respectively. Similarly,

texture dissimilarity was 9.86 (1.40) and 3.82 (0.37) for sDEM

and hREM. The PCA analysis of texture variables from individual

lesions showed that the sDEM was clearly separable from the

hREM based on either texture contrast or dissimilarity. The first

PC explained 64.2% of the variance, whereas the second PC carried

35.8% of the variation. Further, the two texture variables appeared

almost orthogonal and therefore they had a weak or no correlation

with each other. Moreover, the contribution of the 2 texture

variables to the PCs was∼50% each (Figure 5).

3.2.3. Probability distribution of the identified
lesion types

Both lesion types showed a high probability of presence

in the cerebral white matter along with substantial overlap in

location. Quantitatively, the mean (standard deviation) probability

of distribution was the highest in the corpus callosum, which was

50% (41%) for sDEM and 79% (78%) for hREM. This was followed

by the periventricular white matter at 29% (24%) and 60% (69%),

and deep white matter at 22% (16%) and 30% (26%) for sDEM

and hREM, respectively. On average, up to 1% of the lesions from

both types was distributed in the cerebellum and brainstem areas,

and 2% of the lesions were seen in deep gray matter. Further, the

hREM showed a much more concentrated distribution than the

sDEM, seen mainly around the lateral ventricles, corpus callosum,

and deep white matter (Figure 6).

3.3. Lesion type outcomes in relation to
clinical measures

Between sexes, men had a significantly higher total normalized

volume of sDEM than women [mean (standard deviation)= 80.61

(14.78) mm3 vs. 77.41 (11.22) mm3 p = 0.01]. Conversely, women

had a higher total normalized volume of hREM lesions than men

[73.93 (15.11) mm3 vs. 64.26 (24.24) mm3, p = 0.02; Figure 7].

The average lesion size was not significantly different between

women and men in sDEM [11.3 (3.3) mm2 in women vs. 12.1 (3.1)

mm2 in men, p = 0.13] or hREM [21.21 (17.84) mm2 vs. 16.64

(11.83), p = 0.06]. Further, there were no significant differences

between younger and older groups in either average lesion size

or total normalized volume of sDEM or hREM, when assessed

independently or within individual sex groups. In correlation

analyses, there was no significant relationship between the average

lesion size or total normalized lesion volume and disease duration,

EDSS, and DMT use or efficacy.

4. Discussion

In this study, we developed a percentile thresholding approach

to identify 2 critical types of brain MS lesions based on histology-

informed texture measures of conventional MRI. Using recognized

percentile thresholds, this study found that most of the RRMS

participants had both sDEM and hREM. In comparison, the

total normalized volume of sDEM were greater than hREM, but

the average size of hREM was larger than sDEM. Based on the

PCA, texture contrast and dissimilarity were uncorrelated and

contributed similarly in lesion separation. Further, both types of

lesions showed a high likelihood of distribution in the corpus

callosum, and then periventricular and deep white matter, with

the hREM appearing more aggregated than sDEM. Furthermore,

women had less sDEM but greater hREM in total normalized

volume than men; instead, men showed a trend for a larger size in

hREM than women.

Texture is an intrinsic characteristic of a tissue structure

and can be determined by the degree of coarseness, fineness,

irregularity, and complexity. Image textural information has shown

to be valuable for tissue discrimination and classification (20). In

general, a repaired tissue is expected to exhibit a fine imaging

texture, whereas a damaged tissue such as demyelination would

Frontiers inNeurology 06 frontiersin.org

https://doi.org/10.3389/fneur.2023.1213377
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Hosseinpour et al. 10.3389/fneur.2023.1213377

FIGURE 5

Principal component analysis (PCA) outcomes. The PCA biplots (left) show clusters of lesion texture values based on their similarity and the strength

of individual features influencing a principal component. Shown are the 2 types of lesions identified in this study based on texture contrast (A) or

texture dissimilarity (B), and the remaining lesions with intermediate texture values (gray). The PCA variable plots (right) show the relationship and

contribution of the features. sDEM, severely demyelinated lesions; hREM, highly remyelinated lesions.

create a heterogeneous texture pattern (9, 28). The GLCM contrast

and dissimilarity are leading measures of texture coarseness and

heterogeneity (20, 29). Indeed, we detected greater texture contrast

and dissimilarity in sDEM than hREM in the present study.

Our PCA analyses further detected that the two GLCM texture

features were independent and contributed similarly to the major

PCs in lesion type identification based on individual ROI values,

suggesting that using either texture feature alone may be feasible in

similar studies.

With respect to lesion type analyses, this study detected a

smaller average lesion size but greater total normalized lesion

volume in sDEM than hREM. One of the critical reasons for

sustained disease progression in MS is the lack of remyelination

or repair (30, 31). Therefore, it was not surprising to find in

the present study that the total normalized lesion volume of

sDEM was significantly greater than hREM. Previously, based on

diffusion MRI measures, a study performed cluster analysis that

grouped MS lesions into 2 severity types. They found that the

volume of more severe lesions was higher than less severe lesions

(4). Regarding lesion size, larger lesions would be expected to

have more heterogeneous structure due to the higher likelihood

of possessing inhomogeneous tissue pathology across the lesion

area. On the other hand, patches of remyelination might also

more likely be present in larger lesions, given the evidence of

preferably uneven repair across lesion regions in MS lesions

as documented in histology (32, 33). Additionally, the sDEM

could also have had a high degree of tissue loss, causing an

atrophic change and therefore reduced size, which in turn limited
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FIGURE 6

Example lesion distribution maps and area-wise quantification across all RRMS participants. Top panel shows the distribution of severely

demyelinated (red) and highly remyelinated (blue) lesions separately (A) and together (B) at 3 commonly recognized brain areas in MS: periventricular,

deep white matter (WM), and corpus callosum (CC). All images represent corresponding MRI slices from the co-registered MNI template. The

outlines wherein represent the area masks generated from the template. Bottom panel shows the mean (standard error) probability of each lesion

type within each of the 3 defined brain areas. Individual probabilities are normalized by the volume of the corresponding anatomical area. sDEM,

severely demyelinated lesions; hREM, highly remyelinated lesions.
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FIGURE 7

Normalized volume of sDEM and hREM in women and men RRMS participants. Shown are violin plots of the mean, standard deviation, and range

(density) of lesion texture values. sDEM, severely demyelinated lesions; hREM, highly remyelinated lesions. *p < 0.05; **p < 0.01.

their capacity for repair such as remyelination. Combined results

might have contributed to the relatively worse MRI texture

regularity in sDEM than hREM. Nonetheless, a prior study

based on postmortem brains of two progressive MS participants

had also reported that smaller lesions might remyelinate more

effectively than larger ones (34). But the sample size therein

was small and disease phenotypes were different, deserving

further investigation.

Our implementation of lesion distribution maps served as

another valuable means to understand the identified lesion types.

Previously, several studies have used lesion distribution maps to

investigate lesion development in MS. One of them compared the

patterns of lesion distribution between RRMS and SPMS (35).

They showed that the periventricular area was more subject to

severe tissue injury than other brain white matter regions and the

damage wasmore pronounced in SPMS than RRMS. Another study

analyzed the change in spatiotemporal patterns of active lesions

over time in RRMS, where they found that there was a reduction

of active lesion development in major white matter tracts such

as corticospinal tract after treatment (36). Nevertheless, there was

lack of information on the distribution of injury and repair lesions

in MS. In the current study, our probability distribution maps

highlighted that both sDEM and hREM were highly distributed in

the corpus callosum, followed by the periventricular and deep white

matter regions.While previous studies indicated that remyelination

occurred more frequently in the subcortical than periventricular

brain white matter in MS (37, 38), our findings suggest that

strong remyelination repair may also happen in other brain areas.

Alternatively, our results may not be completely contrary to prior

evidence because our hREM only represent an extreme group

of lesions that likely had the most degree of remyelination, not

lesions with intermediate or mild degrees of repair. In addition,

our associated analyses in this study also demonstrated the scarcity

of brainstem lesions from both types. This might be due to

several factors, including the inherent lack of occurrence of MS

lesions in the brainstem, and the challenge of imaging lesions

in this region (39). Furthermore, brainstem lesions are subject

to early apoptotic changes in oligodendrocytes (40) and it is

not uncommon for brainstem to have significant volume loss

in RRMS (41).

This study detected significant differences in total normalized

lesion volume between sexes but no other significant results were

found in terms of other demographic and clinical variables. Besides

the strong differences in disease prevalence, women and men also

seem to show distinct disease outcomes in MS. Once initiated, the

disease is likely to worsen faster in men than women (42, 43).

While not fully understood, the higher total normalized volume

in sDEM but lower in hREM found in men in our study may

indicate reduced repair extent as compared to women. Evidence on

the impact of age on MS disease activity is mixed in the literature.

Various studies have reported that the repair potential decreases

in older MS participants than younger ones (44, 45). However,

this result was not supported by a recent study (46). Based on

30 RRMS participants, the authors investigated the effect of age

on intralesional tissue evolution using different MRI measures

including neurite density and orientation dispersion indices, MTR,

and T1 relaxometry. By dividing participants into young (age <

25th percentile) and old (age > 75th percentile) groups as done

in the current study, they discovered that age did not affect the

repair pattern of MS lesions in MRI. In addition, we did not find

significant relationships between identified lesion types and the

investigated clinical measures here, and associated evidence in the

literature is scarce. One of the few positive studies showed that

based on diffusion MRI measurements, the number and volume

of relatively severe MS lesions were associated with disease severity

and cognitive decline (4). But the participant characteristics, sample

size, andMRmetrics used were different between prior and current

studies, and therefore direct comparison of results is difficult.
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Percentile statistics has shown enormous promise in classifying

tissue types or disease activity in various studies, including those

in MS (6, 47, 48). Based on MTR signal intensity inhomogeneity,

a previous study used the same 25%ile and 75%ile thresholds to

define tissues of highly repairing and highly damaging potential

in MS lesions and normal appearing white matter (49). In

another study, by comparing different thresholds, the authors

showed that the 25%ile and 75%ile thresholds of texture contrast

and dissimilarity were most feasible in differentiating de-and re-

myelinated MS lesions using histology-verified T2-weighted MRI

(50). Similarly, the percentile approach has also shown the utility

in differentiating disease activities in MS. One study divided

relapsing and progressiveMS by using lesion and brain volume, and

lesional myelin water fraction (MWF), and they discovered that the

median, 25%ile, and 75%ile of MWF, and 75%ile of lesion volume

were the top ranking features (51). Another study differentiated

the severity of RRMS participants based on their 25%ile and

75%ile of lesion load, where the 2 groups showed significant

differences in brain microstructure as measures by diffusion MRI

(48). In the present study, we adopted the 25%ile and 75%ile

thresholds based on two top-performing GLCM features (contrast

and dissimilarity) as demonstrated in a prior MRI texture-histology

study (12). Our observation that most of the RRMS participants

showed both sDEM and hREM is in accordance with recent

evidence showing that both lesion types exist in most MS subjects,

with only some individuals presenting with a dominant lesion

type (4).

Our study has several limitations. The focus was mainly on

cerebral white matter lesions. While lesion injury and repair may

be present in other parts of the brain including gray matter,

the main purpose of this study was to investigate whether and

how a method for lesion type characterization can be derived.

Given the prevalence of inflammatory changes across the brain in

RRMS and the sensitivity of conventional MRI to these changes

in brain white matter, studying white matter pathology seems

reasonable. In addition, as part of a wellrecognized challenge in

imaging of living people in MS, it was unlikely to differentiate

lesions fallen between the two defined thresholds (75%ile and

25%ile) in this study, such as lesions of incomplete demyelination

vs. partial remyelination. In a similar sense, the hREM type

might also have included lesions of mild demyelination although

both mild injury and heavy repair would similarly represent

a positive benefit. The aforementioned lesion differentiation

challenges were likely exacerbated by the lack of longitudinal

data or direct histological analysis for confirmation that formed

other limitations of the study. However, this study aimed to

characterize lesions of “extreme” injury or repair that was expected

to be highly reflective of de- and re-myelination. This expectation

could be attributed to several factors, including the commonly

demyelinating nature of MS pathology (2), the likelihood of lesion

repair with remyelination rather than axonal regrowth (52, 53),

and the relative utility of the texture measures for assessing

de- and re-myelinated brain MS lesions as shown previously

(12). Therefore, based on recognized percentile thresholds, our

identification of such extreme types of lesions appeared reasonable.

Further, this study was limited to RRMS. Combining other MS

subtypes may broaden the scope of the study. However, RRMS

is the phenotype that has the most lesions with active de- and

re-myelination. Finally, this study focused on lesion types that

represented approximately half instead of all of the lesion counts

from the whole sample size involved. At an individual level,

the sDEM and hREM in combination may represent most or

minimal amount of lesions in a participant depending on disease

activity or severity. While with limitations, this approach allowed

to assess lesions of potentially the most influence and obtain

results with the highest confidence. Obtaining these results in

vivo using routinely available brain MRI scans would further

help promote the power of clinical imaging, in addition to

adding likely new information to the literature. In the future,

we seek to verify our findings using different datasets, assess

other types of lesions in different locations, and correlate MRI

results with different types of measures of disease development or

intervention impact.

In summary, characterization of lesion severity in vivo is

fundamental for a thorough understanding of disease activity

and treatment impact in MS. Using histology-verified brain MRI

texture measures and a simple percentile thresholding approach,

this study shows the potential to identify two critical types of

brain MS lesions. With further confirmation, this information can

help improve our ability in disease monitoring and in identifying

new reparative therapies in MS. Further, the different outcomes

of the identified lesions between men and women may stimulate

new sex-specific studies, including their relationship with clinical

outcomes and the development of associated intervention and

prevention strategies to improve the prognosis of all individuals

with MS.
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