176 research outputs found
Some Empirical Criteria for Attributing Creativity to a Computer Program
Peer reviewedPostprin
Tactile gating in a reaching and grasping task
This is the final version of the article. It first appeared from Wiley / American Physiological Society via http://dx.doi.org/10.1002/phy2.267Abstract A multitude of events bombard our sensory systems at every moment of our lives. Thus, it is important for the sensory cortex to gate unimportant events. Tactile suppression is a well-known phenomenon defined as a reduced ability to detect tactile events on the skin before and during movement. Previous experiments found detection rates decrease just prior to and during finger abduction, and decrease according to the proximity of the moving effector. This study examined how tactile detection changes during a reach to grasp. Fourteen human participants used their right hand to reach and grasp a cylinder. Tactors were attached to the index finger, the fifth digit, and the forearm of both the right and left arm and vibrated at various epochs relative to a "go" tone. Results showed that detection rates at the forearm decreased before movement onset; whereas at the right index finger, right fifth digit and at the left index finger, left fifth digit, and forearm sites did not decrease like in the right forearm. These results indicate that the task affects gating dynamics in a temporally- and contextually dependent manner and implies that feed-forward motor planning processes can modify sensory signals.The authors thank the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Foundation for Innovation (CFI), and the British Columbia Knowledge Development Fund (BCKDF) for supporting this research
Early diagenetic vivianite [Fe-3(PO4)(2) center dot 8H(2)O] in a contaminated freshwater sediment and insights into zinc uptake: a mu-EXAFS, mu-XANES and Raman study
The sediments in the Salford Quays, a heavily-modified urban water body, contain high levels of organic matter, Fe, Zn and nutrients as a result of past contaminant inputs. Vivianite [Fe3(PO4)2 · 8H2O] has been observed to have precipitated within these sediments during early diagenesis as a result of the release of Fe and P to porewaters. These mineral grains are small (<100 μm) and micron-scale analysis techniques (SEM, electron microprobe, μ-EXAFS, μ-XANES and Raman) have been applied in this study to obtain information upon the structure of this vivianite and the nature of Zn uptake in the mineral. Petrographic observations, and elemental, X-ray diffraction and Raman spectroscopic analysis confirms the presence of vivianite. EXAFS model fitting of the FeK-edge spectra for individual vivianite grains produces Fe–O and Fe–P co-ordination numbers and bond lengths consistent with previous structural studies of vivianite (4O atoms at 1.99–2.05 Å; 2P atoms at 3.17–3.25 Å). One analysed grain displays evidence of a significant Fe3+ component, which is interpreted to have resulted from oxidation during sample handling and/or analysis. EXAFS modelling of the Zn K-edge data, together with linear combination XANES fitting of model compounds, indicates that Zn may be incorporated into the crystal structure of vivianite (4O atoms at 1.97 Å; 2P atoms at 3.17 Å). Low levels of Zn sulphate or Zn-sorbed goethite are also indicated from linear combination XANES fitting and to a limited extent, the EXAFS fitting, the origin of which may either be an oxidation artifact or the inclusion of Zn sulphate into the vivianite grains during precipitation. This study confirms that early diagenetic vivianite may act as a sink for Zn, and potentially other contaminants (e.g. As) during its formation and, therefore, forms an important component of metal cycling in contaminated sediments and waters. Furthermore, for the case of Zn, the EXAFS fits for Zn phosphate suggest this uptake is structural and not via surface adsorption
Exogenous spatial precuing reliably modulates object processing but not object substitution masking
Object substitution masking (OSM) is used in behavioral and imaging studies to investigate processes associated with the formation of a conscious percept. Reportedly, OSM occurs only when visual attention is diffusely spread over a search display or focused away from the target location. Indeed, the presumed role of spatial attention is central to theoretical accounts of OSM and of visual processing more generally (Di Lollo, Enns, & Rensink, Journal of Experimental Psychology: General 129:481–507, 2000). We report a series of five experiments in which valid spatial precuing is shown to enhance the ability of participants to accurately report a target but, in most cases, without affecting OSM. In only one experiment (Experiment 5) was a significant effect of precuing observed on masking. This is in contrast to the reliable effect shown across all five experiments in which precuing improved overall performance. The results are convergent with recent findings from Argyropoulos, Gellatly, and Pilling (Journal of Experimental Psychology: Human Perception and Performance 39:646–661, 2013), which show that OSM is independent of the number of distractor items in a display. Our results demonstrate that OSM can operate independently of focal attention. Previous claims of the strong interrelationship between OSM and spatial attention are likely to have arisen from ceiling or floor artifacts that restricted measurable performance
Action Without Awareness: Reaching to an Object You Do Not Remember Seeing
BACKGROUND: Previous work by our group has shown that the scaling of reach trajectories to target size is independent of obligatory awareness of that target property and that "action without awareness" can persist for up to 2000 ms of visual delay. In the present investigation we sought to determine if the ability to scale reaching trajectories to target size following a delay is related to the pre-computing of movement parameters during initial stimulus presentation or the maintenance of a sensory (i.e., visual) representation for on-demand response parameterization. METHODOLOGY/PRINCIPAL FINDINGS: Participants completed immediate or delayed (i.e., 2000 ms) perceptual reports and reaching responses to different sized targets under non-masked and masked target conditions. For the reaching task, the limb associated with a trial (i.e., left or right) was not specified until the time of response cuing: a manipulation that prevented participants from pre-computing the effector-related parameters of their response. In terms of the immediate and delayed perceptual tasks, target size was accurately reported during non-masked trials; however, for masked trials only a chance level of accuracy was observed. For the immediate and delayed reaching tasks, movement time as well as other temporal kinematic measures (e.g., times to peak acceleration, velocity and deceleration) increased in relation to decreasing target size across non-masked and masked trials. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that speed-accuracy relations were observed regardless of whether participants were aware (i.e., non-masked trials) or unaware (i.e., masked trials) of target size. Moreover, the equivalent scaling of immediate and delayed reaches during masked trials indicates that a persistent sensory-based representation supports the unconscious and metrical scaling of memory-guided reaching
Is Mislocalization during saccades related to the position of the saccade target within the image or to the gaze position at the end of the saccade?
A stimulus that is flashed around the time of a saccade tends to be mislocalized in the direction of the saccade target. Our question is whether the mislocalization is related to the position of the saccade target within the image or to the gaze position at the end of the saccade. We separated the two with a visual illusion that influences the perceived distance to the target of the saccade and thus saccade endpoint without affecting the perceived position of the saccade target within the image. We asked participants to make horizontal saccades from the left to the right end of the shaft of a Müller-Lyer figure. Around the time of the saccade, we flashed a bar at one of five possible positions and asked participants to indicate its location by touching the screen. As expected, participants made shorter saccades along the fins-in (<->) configuration than along the fins-out (>-<) configuration of the figure. The illusion also influenced the mislocalization pattern during saccades, with flashes presented with the fins-out configuration being perceived beyond flashes presented with the fins-in configuration. The difference between the patterns of mislocalization for bars flashed during the saccade for the two configurations corresponded quantitatively with a prediction based on compression towards the saccade endpoint considering the magnitude of the effect of the illusion on saccade amplitude. We conclude that mislocalization is related to the eye position at the end of the saccade, rather than to the position of the saccade target within the image
Left, right, left, right, eyes to the front! Müller-Lyer bias in grasping is not a function of hand used, hand preferred or visual hemifield, but foveation does matter
We investigated whether the control of movement of the left hand is more likely to involve the use of allocentric information than movements performed with the right hand. Previous studies (Gonzalez et al. in J Neurophys 95:3496–3501, 2006; De Grave et al. in Exp Br Res 193:421–427, 2009) have reported contradictory findings in this respect. In the present study, right-handed participants (N = 12) and left-handed participants (N = 12) made right- and left-handed grasps to foveated objects and peripheral, non-foveated objects that were located in the right or left visual hemifield and embedded within a Müller-Lyer illusion. They were also asked to judge the size of the object by matching their hand aperture to its length. Hand apertures did not show significant differences in illusory bias as a function of hand used, handedness or visual hemifield. However, the illusory effect was significantly larger for perception than for action, and for the non-foveated compared to foveated objects. No significant illusory biases were found for reach movement times. These findings are consistent with the two-visual system model that holds that the use of allocentric information is more prominent in perception than in movement control. We propose that the increased involvement of allocentric information in movements toward peripheral, non-foveated objects may be a consequence of more awkward, less automatized grasps of nonfoveated than foveated objects. The current study does not support the conjecture that the control of left-handed and right-handed grasps is predicated on different sources of information
The copper centers of tyramine β-monooxygenase and its catalytic-site methionine variants: an X-ray absorption study
Tyramine β-monooxygenase (TBM) is a member of a family of copper monooxygenases containing two noncoupled copper centers, and includes peptidylglycine monooxygenase and dopamine β-monooxygenase. In its Cu(II) form, TBM is coordinated by two to three His residues and one to two non-His O/N ligands consistent with a [CuM(His)2(OH2)2–CuH(His)3(OH2)] formulation. Reduction to the Cu(I) state causes a change in the X-ray absorption spectroscopy (XAS) spectrum, consistent with a change to a [CuM(His)2S(Met)–CuH(His)3] environment. Lowering the pH to 4.0 results in a large increase in the intensity of the Cu(I)–S extended X-ray absorption fine structure (EXAFS) component, suggesting a tighter Cu–S bond or the coordination of an additional sulfur donor. The XAS spectra of three variants, where the CuM Met471 residue had been mutated to His, Cys, and Asp, were examined. Significant differences from the wild-type enzyme are evident in the spectra of the reduced mutants. Although the side chains of His, Cys, and Asp are expected to substitute for Met at the CuM site, the data showed identical spectra for all three reduced variants, with no evidence for coordination of residue 471. Rather, the K-edge data suggested a modest decrease in coordination number, whereas the EXAFS indicated an average of two His residues at each Cu(I) center. These data highlight the unique role of the Met residue at the CuM center, and pose interesting questions as to why replacement by the cuprophilic thiolate ligand leads to detectable activity whereas replacement by imidazole generates inactive TBM
Effect of terminal accuracy requirements on temporal gaze-hand coordination during fast discrete and reciprocal pointings
Background\ud
\ud
Rapid discrete goal-directed movements are characterized by a well known coordination pattern between the gaze and the hand displacements. The gaze always starts prior to the hand movement and reaches the target before hand velocity peak. Surprisingly, the effect of the target size on the temporal gaze-hand coordination has not been directly investigated. Moreover, goal-directed movements are often produced in a reciprocal rather than in a discrete manner. The objectives of this work were to assess the effect of the target size on temporal gaze-hand coordination during fast 1) discrete and 2) reciprocal pointings.\ud
\ud
Methods\ud
\ud
Subjects performed fast discrete (experiment 1) and reciprocal (experiment 2) pointings with an amplitude of 50 cm and four target diameters (7.6, 3.8, 1.9 and 0.95 cm) leading to indexes of difficulty (ID = log2[2A/D]) of 3.7, 4.7, 5.7 and 6.7 bits. Gaze and hand displacements were synchronously recorded. Temporal gaze-hand coordination parameters were compared between experiments (discrete and reciprocal pointings) and IDs using analyses of variance (ANOVAs).\ud
\ud
Results\ud
\ud
Data showed that the magnitude of the gaze-hand lead pattern was much higher for discrete than for reciprocal pointings. Moreover, while it was constant for discrete pointings, it decreased systematically with an increasing ID for reciprocal pointings because of the longer duration of gaze anchoring on target.\ud
\ud
Conclusion \ud
\ud
Overall, the temporal gaze-hand coordination analysis revealed that even for high IDs, fast reciprocal pointings could not be considered as a concatenation of discrete units. Moreover, our data clearly illustrate the smooth adaptation of temporal gaze-hand coordination to terminal accuracy requirements during fast reciprocal pointings. It will be interesting for further researches to investigate if the methodology used in the experiment 2 allows assessing the effect of sensori-motor deficits on gaze-hand coordination
Perceiving What Is Reachable Depends on Motor Representations: Evidence from a Transcranial Magnetic Stimulation Study
Background: Visually determining what is reachable in peripersonal space requires information about the egocentric location of objects but also information about the possibilities of action with the body, which are context dependent. The aim of the present study was to test the role of motor representations in the visual perception of peripersonal space. Methodology: Seven healthy participants underwent a TMS study while performing a right-left decision (control) task or perceptually judging whether a visual target was reachable or not with their right hand. An actual grasping movement task was also included. Single pulse TMS was delivered 80 % of the trials on the left motor and premotor cortex and on a control site (the temporo-occipital area), at 90 % of the resting motor threshold and at different SOA conditions (50ms, 100ms, 200ms or 300ms). Principal Findings: Results showed a facilitation effect of the TMS on reaction times in all tasks, whatever the site stimulated and until 200ms after stimulus presentation. However, the facilitation effect was on average 34ms lower when stimulating the motor cortex in the perceptual judgement task, especially for stimuli located at the boundary of peripersonal space. Conclusion: This study provides the first evidence that brain motor area participate in the visual determination of what is reachable. We discuss how motor representations may feed the perceptual system with information about possibl
- …