885 research outputs found

    J-Class Abelian Semigroups of Matrices on C^n and Hypercyclicity

    Full text link
    We give a characterization of hypercyclic finitely generated abelian semigroups of matrices on C^n using the extended limit sets (the J-sets). Moreover we construct for any n\geq 2 an abelian semigroup G of GL(n;C) generated by n + 1 diagonal matrices which is locally hypercyclic but not hypercyclic and such that JG(e_k) = C^n for every k = 1; : : : ; n, where (e_1; : : : ; e_n) is the canonical basis of C^n. This gives a negative answer to a question raised by Costakis and Manoussos.Comment: 10 page

    Patterned and Disordered Continuous Abelian Sandpile Model

    Full text link
    We study critical properties of the continuous Abelian sandpile model with anisotropies in toppling rules that produce ordered patterns on it. Also we consider the continuous directed sandpile model perturbed by a weak quenched randomness and study critical behavior of the model using perturbative conformal field theory and show the model has a new random fixed point.Comment: 11 Pages, 6 figure

    Antiinflammatory and Antinociceptive of Hydro Alcoholic Tanacetum balsamita L. Extract

    Get PDF
    The use of herbs to treat disease is accompanied with the history of human life. This research is aimed to study the anti-inflammatory and antinociceptive effects of hydroalcoholic extract of aerial parts of "Tanacetum balsamita balsamita". In the experimental studies 144 male mice are used. In the inflammatory test, animals were divided into six groups: Control, positive control (receiving Dexamethason at dose of 15mg/kg), and four experimental groups receiving Tanacetum balsamita balsamita hydroalcoholic extract at doses of 25, 50, 100 and 200mg/kg. Xylene was used to induce inflammation. Formalin was used to study the nociceptive effects. Animals were divided into six groups: control group, positive control group (receiving morphine) and four experimental groups receiving Tanacetum balsamita balsamita (Tb.) hydroalcoholic extract at doses of 25, 50, 100 and 200mg/kg. I.p. injection of drugs or normal saline was performed 30 minutes before test. The data were analyzed by using one way Variance analysis and Tukey post-test. Aerial parts of Tanacetum balsamita balsamita hydroalcoholic extract decreased significantly inflammatory at dose of 200mg/kg (P<0/001) and caused a significant decrease and alleviated the nociception in both first and second phases at doses of 200mg/kg (p<0/001) and 100mg/kg (P<0/05). Tanacetum balsamita balsamita extract has the anti-inflammatory and anti-nociceptive effects which seems to be related with flavonoids especially Quercetin

    Enhancing properties of iron and manganese ores as oxygen carriers for chemical looping processes by dry impregnation

    Get PDF
    The use of naturally occurring ores as oxygen carriers in CLC processes is attractive because of their relative abundance and low cost. Unfortunately, they typically exhibit lower reactivity and lack the mechanical robustness required, when compared to synthetically produced carriers. Impregnation is a suitable method for enhancing both the reactivity and durability of natural ores when used as oxygen carriers for CLC systems. This investigation uses impregnation to improve the chemical and mechanical properties of a Brazilian manganese ore and a Canadian iron ore. The manganese ore was impregnated with Fe2O3 and the iron ore was impregnated with Mn2O3 with the goal of forming a combined Fe/Mn oxygen carrier. The impregnated ore’s physical characteristics were assessed by SEM, BET and XRD analysis. Measurements of the attrition resistance and crushing strength were used to investigate the mechanical robustness of the oxygen carriers. The impregnated ore’s mechanical and physical properties were clearly enhanced by the impregnation method, with boosts in crushing strength of 11–26% and attrition resistance of 37–31% for the impregnated iron and manganese ores, respectively. Both the unmodified and impregnated ore’s reactivity, for the conversion of gaseous fuel (CH4 and syngas) and gaseous oxygen release (CLOU potential) were investigated using a bench-scale quartz fluidised-bed reactor. The impregnated iron ore exhibited a greater degree of syngas conversion compared to the other samples examined. Iron ore based oxygen carrier’s syngas conversion increases with the number of oxidation and reduction cycles performed. The impregnated iron ore exhibited gaseous oxygen release over extended periods in an inert atmosphere and remained at a constant 0.2% O2 concentration by volume at the end of this inert period. This oxygen release would help ensure the efficient use of solid fuels. The impregnated iron ore’s reactivity for CH4 conversion was similar to the reactivity of its unmodified counterpart. The unmodified manganese ore converted CH4 to the greatest extent of all the samples tested here, while the impregnated manganese ore exhibited a decrease in reactivity with respect to syngas and CH4 conversion.EPSR

    The mediating role of spirituality between self-value and counselling attitudes among Nigerian students in Malaysian universities

    Get PDF
    This study examined the mediating role of spirituality between self-value and counselling attitudes towards seeking professional psychological help among Nigerian students in Malaysian universities. The sample consisted of 394 Nigerian students who are currently enrolled in 10 randomly selected universities across Malaysia. They completed self-report questionnaires administered one-on-one in each of the selected institutions. It was hypothesized that there is no mediating relationship between self-value and counselling attitudes through spirituality. Two levels of quantitative research are presented: descriptive and correlational. SPSS version 22 and SEM analyses (descriptive statistics/AMOS) gave a contrary result, therefore the null hypothesis was rejected and it was concluded that spirituality mediated the relationship between self-value and counselling attitudes. Limitations in the current study, such as sample size, and directions for future studies to address the limitations are discussed

    Phenotypic and molecular characterization of plasmid mediated AmpC among clinical isolates of Klebsiella pneumoniae isolated from different hospitals in Tehran

    Get PDF
    Introduction: Klebsiella pneumoniae is one of the main opportunistic pathogens which can cause different types of infections. Production of beta-lactamases like AmpC and ESBL mostly lead to beta-lactam resistance in these Gram-Negative bacteria. The aim of this study was the detection of AmpC-producing K. pneumoniae in clinical isolates. Materials and Methods: Three hundred and three isolates of K. pneumoniae were identified. Double disc method including cefoxitin with cefepime and using boronic acid with cloxacillin were performed as two phenotypic methods for detection of AmpC. Amplification of AmpC gene was performed by PCR. Results: Eight and three isolates showed positive results in double disc method and by using boronic acid with cloxacillin, respectively. Five isolates had specific band for AmpC gene after electrophoresis. Conclusion: Our results were indicated the low prevalence of AmpC-producer-K. pnemoniae in Iran. On the other hand these two tested phenotypic methods showed low sensitivity for detection of AmpC. © 2015 Journal of Clinical and Diagnostic Research. All Rights Reserved

    Abelian Sandpile Model on the Honeycomb Lattice

    Full text link
    We check the universality properties of the two-dimensional Abelian sandpile model by computing some of its properties on the honeycomb lattice. Exact expressions for unit height correlation functions in presence of boundaries and for different boundary conditions are derived. Also, we study the statistics of the boundaries of avalanche waves by using the theory of SLE and suggest that these curves are conformally invariant and described by SLE2.Comment: 24 pages, 5 figure

    Bio-based electrospun fibers for wound healing

    Get PDF
    Being designated to protect other tissues, skin is the first and largest human body organ to be injured and for this reason, it is accredited with a high capacity for self-repairing. However, in the case of profound lesions or large surface loss, the natural wound healing process may be ineffective or insufficient, leading to detrimental and painful conditions that require repair adjuvants and tissue substitutes. In addition to the conventional wound care options, biodegradable polymers, both synthetic and biologic origin, are gaining increased importance for their high biocompatibility, biodegradation, and bioactive properties, such as antimicrobial, immunomodulatory, cell proliferative, and angiogenic. To create a microenvironment suitable for the healing process, a key property is the ability of a polymer to be spun into submicrometric fibers (e.g., via electrospinning), since they mimic the fibrous extracellular matrix and can support neo- tissue growth. A number of biodegradable polymers used in the biomedical sector comply with the definition of bio-based polymers (known also as biopolymers), which are recently being used in other industrial sectors for reducing the material and energy impact on the environment, as they are derived from renewable biological resources. In this review, after a description of the fundamental concepts of wound healing, with emphasis on advanced wound dressings, the recent developments of bio-based natural and synthetic electrospun structures for efficient wound healing applications are highlighted and discussed. This review aims to improve awareness on the use of bio-based polymers in medical devices

    Electrospun ZnO/Poly(Vinylidene fluoride-trifluoroethylene) scaffolds for lung tissue engineering

    Get PDF
    Due to the morbidity and lethality of pulmonary diseases, new biomaterials and scaffolds are needed to support the regeneration of lung tissues, while ideally providing protective effects against inflammation and microbial aggression. In this study, we investigated the potential of nanocomposites of poly(vinylidene fluoride-co-trifluoroethylene) [P(VDF-TrFE)] incorporating zinc oxide (ZnO), in the form of electrospun fiber meshes for lung tissue engineering. We focused on their anti-inflammatory, antimicrobial, and mechanoelectrical character according to different fiber mesh textures (i.e., collected at 500 and 4000 rpm) and compositions: (0/100) and (20/80) w/w% ZnO/P(VDF-TrFE), plain and composite, respectively. The scaffolds were characterized in terms of morphological, physicochemical, mechanical, and piezoelectric properties, as well as biological response of A549 alveolar epithelial cells in presence of lung-infecting bacteria. By virtue of ZnO, the composite scaffolds showed a strong anti-inflammatory response in A549 cells, as demonstrated by a significant decrease of interleukin (IL) IL-1a, IL-6, and IL-8 expression in 6 h. In all the scaffold types, but remarkably in the aligned composite ones, transforming growth factor b (TGF-b) and the antimicrobial peptide human b defensin-2 (HBD-2) were significantly increased. The ZnO/P(VDF-TrFE) electrospun fiber meshes hindered the biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa and the cell/scaffold constructs were able to impede S. aureus adhesion and S. aureus and P. aeruginosa invasiveness, independent of the scaffold type. The data obtained suggested that the composite scaffolds showed potential for tunable mechanical properties, in the range of alveolar walls and fibers. Finally, we also showed good piezoelectricity, which is a feature found in elastic and collagen fibers, the main extracellular matrix molecules in lungs. The combination of all these properties makes ZnO/P(VDF-TrFE) fiber meshes promising for lung repair and regeneration
    corecore