106 research outputs found
Red mud-based geopolymers with tailored alkali diffusion properties and pH buffering ability
This study develop novel porous red mud (RM) based geopolymers and evaluates their potential to ensure prolonged pH control. Several properties of the novel geopolymers were examined including buffering ability, alkalis leaching behaviour, mineralogical composition, microstructure and physical properties. Two experimental plans were defined to evaluate the influence of porosity and RM content on those properties. The pH values of the eluted water and geopolymers OH ions leaching have been determined over time showing that total OH ions and the leaching rate can be tailored by controlling the geopolymers porous structure and the availability of free alkaline species. The lower pH gradient over 28th d (1.64 pH units) was achieved by combining a 0.025 wt% pore forming agent (aluminium powder) with 45 wt% MK replacement by red mud.
A high and prolonged buffer capacity was accomplished, proving that red mud-based geopolymers have potential to be applied as pH buffering material.This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (FCT Ref. UID/CTM/50011/2013), financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement.info:eu-repo/semantics/publishedVersio
Unveiling the mechanism of action of 7α-acetoxy-6β-hydroxyroyleanone on an mrsa/visa strain: Membrane and cell wall interactions
UIDB/00100/2020
PTDC/MED-QUI/29036/2017
CEECIND/03414/2018
UIDB/04378/2020
PTDC/BIA-MIC/31645/2017
UID/DTP/04138/2019
UID/DTP/04567/2019
CBIOS/PRUID/BI1/2017
UIDB/04567/2020
UID/AMB/50017
UIDP/50017/2020
UIDB/50017/2020The number of cases of failure in the treatment of infections associated with resistant bacteria is on the rise, due to the decreasing efficacy of current antibiotics. Notably, 7α-Acetoxy-6β-hydroxyroyleanone (AHR), a diterpene isolated from different Plectranthus species, showed antibacterial activity, namely against Methicillin-resistant Staphylococcus aureus (MRSA) strains. The high antibacterial activity and low cytotoxicity render this natural compound an interesting alternative against resistant bacteria. The aim of this study is to understand the mechanism of action of AHR on MRSA, using the MRSA/Vancomycin-intermediate S. aureus (VISA) strain CIP 106760, and to study the AHR effect on lipid bilayers and on the cell wall. Although AHR interacted with lipid bilayers, it did not have a significant effect on membrane passive permeability. Alternatively, bacteria treated with this royleanone displayed cell wall disruption, without revealing cell lysis. In conclusion, the results gathered so far point to a yet undescribed mode of action that needs further investigation.publishersversionpublishe
A fibrin coating method of polypropylene meshes enables the adhesion of menstrual blood-derived mesenchymal stromal cells: a new delivery strategy for stem cell-based therapies
Polypropylene (PP) mesh is well-known as a gold standard of all prosthetic materials of choice for the reinforcement of soft tissues in case of hernia, organ prolapse, and urinary incontinence. The adverse effects that follow surgical mesh implantation remain an unmet medical challenge. Herein, it is outlined a new approach to allow viability and adhesion of human menstrual blood-derived mesenchymal stromal cells (MenSCs) on PP surgical meshes. A multilayered fibrin coating, based on fibrinogen and thrombin from a commercial fibrin sealant, was optimized to guarantee a homogeneous and stratified film on PP mesh. MenSCs were seeded on the optimized fibrin-coated meshes and their adhesion, viability, phenotype, gene expression, and immunomodulatory capacity were fully evaluated. This coating guaranteed MenSC viability, adhesion and did not trigger any change in their stemness and inflammatory profile. Additionally, MenSCs seeded on fibrin-coated meshes significantly decreased CD4+ and CD8+ T cell proliferation, compared to in vitro stimulated lymphocytes (p < 0.0001). Hence, the proposed fibrin coating for PP surgical meshes may allow the local administration of stromal cells and the reduction of the exacerbated inflammatory response following mesh implantation surgery. Reproducible and easy to adapt to other cell types, this method undoubtedly requires a multidisciplinary and translational approach to be improved for future clinical uses.This work was supported by: SANTANDER BANK: “Convenio de colaboración empresarial en actividades de interés general” to F.M.; FUNDAÇÃO PARA A CIÊNCIA E A TECNOLOGIA
(FCT): post-doctoral contract CEECIND/01026/2018 to J.M.S.; INSTITUTO DE SALUD CARLOS
III (ISCIII): a “PFIS” contract (FI19/00041) to M.Á.P., a “Sara Borrell” grant (CD19/00048) to E.L.;
a “Miguel Servet I” grant (MS17/00021), co-funded by the European Social Fund (ESF) “Investing
in your future”, and projects CP17/00021 and PI18/0911, co-funded by the European Regional
Development Fund (ERDF) “A way to make Europe” to J.G.C.; a “CIBERCV” grant (CB16/11/00494),
co-funded by the ERDF to F.M.S.-M; JUNTA DE EXTREMADURA, CONSEJERÍA DE ECONOMÍA,
CIENCIA Y AGENDA DIGITAL: project IB20184 (co-funded by ERDF) to E.L. and M.P.; grant
GR18199, co-funded by the ERDF, to F.M.S.-M.; contracts TA18054 to I.J. and TA18011 to J.J.L. (cofinanced by FEDER)
Synergistic impact of endurance training and intermittent hypobaric hypoxia on cardiac function and mitochondrial energetic and signaling
Background
Intermittent hypobaric-hypoxia (IHH) and endurance-training (ET) are cardioprotective strategies against stress-stimuli. Mitochondrial modulation appears to be an important step of the process. This study aimed to analyze whether a combination of these approaches provides additive or synergistic effects improving heart-mitochondrial and cardiac-function.
Methods
Two-sets of rats were divided into normoxic-sedentary (NS), normoxic-exercised (NE, 1 h/day/5 weeks treadmill-running), hypoxic-sedentary (HS, 6000 m, 5 h/day/5 weeks) and hypoxic-exercised (HE) to study overall cardiac and mitochondrial function. In vitro cardiac mitochondrial oxygen consumption and transmembrane potential were evaluated. OXPHOS subunits and ANT protein content were semi-quantified by Western blotting. HIF-1α, VEGF, VEGF-R1 VEGF-R2, BNP, SERCA2a and PLB expressions were measured by qRT-PCR and cardiac function was characterized by echocardiography and hemodynamic parameters.
Results
Respiratory control ratio (RCR) increased in NE, HS and HE vs. NS. Susceptibility to anoxia/reoxygenation-induced dysfunction decreased in NE, HS and HE vs. NS. HS decreased mitochondrial complex-I and -II subunits; however HE completely reverted the decreased content in complex-II subunits. ANT increased in HE. HE presented normalized ventricular–arterial coupling (Ea) and BNP myocardial levels and significantly improved myocardial performance as evaluated by increased cardiac output and normalization of the Tei index vs. HS.
Conclusion
Data demonstrates that IHH and ET confer cardiac mitochondria with a more resistant phenotype although without visible addictive effects at least under basal conditions. It is suggested that the combination of both strategies, although not additive, results into improved cardiac function
Mitochondrionopathy Phenotype in Doxorubicin-Treated Wistar Rats Depends on Treatment Protocol and Is Cardiac-Specific
Although doxorubicin (DOX) is a very effective antineoplastic agent, its clinical use is limited by a dose-dependent, persistent and cumulative cardiotoxicity, whose mechanism remains to be elucidated. Previous works in animal models have failed to use a multi-organ approach to demonstrate that DOX-associated toxicity is selective to the cardiac tissue. In this context, the present work aims to investigate in vivo DOX cardiac, hepatic and renal toxicity in the same animal model, with special relevance on alterations of mitochondrial bioenergetics. To this end, male Wistar rats were sub-chronically (7 wks, 2 mg/Kg) or acutely (20 mg/Kg) treated with DOX and sacrificed one week or 24 hours after the last injection, respectively. Alterations of mitochondrial bioenergetics showed treatment-dependent differences between tissues. No alterations were observed for cardiac mitochondria in the acute model but decreased ADP-stimulated respiration was detected in the sub-chronic treatment. In the acute treatment model, ADP-stimulated respiration was increased in liver and decreased in kidney mitochondria. Aconitase activity, a marker of oxidative stress, was decreased in renal mitochondria in the acute and in heart in the sub-chronic model. Interestingly, alterations of cardiac mitochondrial bioenergetics co-existed with an absence of echocardiograph, histopathological or ultra-structural alterations. Besides, no plasma markers of cardiac injury were found in any of the time points studied. The results confirm that alterations of mitochondrial function, which are more evident in the heart, are an early marker of DOX-induced toxicity, existing even in the absence of cardiac functional alterations
Carcass persistence and detectability : reducing the uncertainty surrounding wildlife-vehicle collision surveys
Carcass persistence time and detectability are two main sources of uncertainty on roadkill surveys. In this study, we evaluate the influence of these uncertainties on roadkill surveys and estimates. To estimate carcass persistence time, three observers (including the driver) surveyed 114km by car on a monthly basis for two years, searching for wildlife-vehicle collisions
(WVC). Each survey consisted of five consecutive days. To estimate carcass detectability, we randomly selected stretches of 500m to be also surveyed on foot by two other observers (total 292 walked stretches, 146 km walked). We expected that body size of the carcass, road type, presence of scavengers and weather conditions to be the main drivers influencing the carcass persistence times, but their relative importance was unknown. We also expected detectability to be highly dependent on body size. Overall, we recorded low
median persistence times (one day) and low detectability (<10%) for all vertebrates. The results indicate that body size and landscape cover (as a surrogate of scavengers' presence) are the major drivers of carcass persistence. Detectability was lower for animals with body mass less than 100g when compared to carcass with higher body mass. We estimated that our recorded mortality rates underestimated actual values of mortality by 2±10 fold. Although persistence times were similar to previous studies, the detectability rates here described are very different from previous studies. The results suggest that detectability is the main source of bias across WVC studies. Therefore, more than persistence times, studies should carefully account for differing detectability when comparing WVC studies
Waste glass from end-of-life fluorescent lamps as raw material in geopolymers
Nowadays the stunning volume of generated wastes, the exhaustion of raw materials, and the disturbing greenhouse gases emission levels show that a paradigm shift is mandatory. In this context, the possibility of using wastes instead of virgin raw materials can mitigate the environmental problems related to wastes, while reducing the consumption of the Earth’s natural resources. This innovative work reports the incorporation of unexplored waste glass coming from end-of-life fluorescent lamps into geopolymers.
The influence of the waste glass incorporation level, NaOH molarity and curing conditions on the microstructure, physical and mechanical properties of the geopolymers was evaluated. Results demonstrate that curing conditions are the most influential factor on the geopolymer characteristics, while the NaOH molarity is less important. Geopolymers containing 37.5% (wt) waste glass were successfully produced, showing compressive strength of 14 MPa (after 28 days of curing), suggesting the possibility of their use in non-structural applications.
Porous waste-based geopolymers for novel applications were also fabricated
- …