990 research outputs found

    Cost-Effectiveness of Electricity Energy Efficiency Programs

    Get PDF
    We analyze the cost-effectiveness of electric utility rate payer–funded programs to promote demand-side management (DSM) and energy efficiency investments. We develop a conceptual model that relates demand growth rates to accumulated average DSM capital per customer and changes in energy prices, income, and weather. We estimate that model using nonlinear least squares for two different utility samples. Based on the results for the most complete sample, we find that DSM expenditures over the last 18 years have resulted in a central estimate of 1.1 percent electricity savings at a weighted average cost to utilities (or other program funders) of about 6 cents per kWh saved. Econometrically-based policy simulations find that incremental DSM spending by utilities that had no or relatively low levels of average DSM spending per customer in 2006 could produce 14 billion kWh in additional savings at an expected incremental cost to the utilities of about 3 cents per kWh saved.energy efficiency, demand-side management, negawatt cost

    Cost-Effectiveness of Electricity Energy Efficiency Programs

    Get PDF
    We analyze the cost-effectiveness of electric utility ratepayer-funded programs to promote demand-side management (DSM) and energy efficiency (EE) investments. We specify a model that relates electricity demand to previous EE DSM spending, energy prices, income, weather, and other demand factors. In contrast to previous studies, we allow EE DSM spending to have a potential long-term demand effect and explicitly address possible endogeneity in spending. We find that current period EE DSM expenditures reduce electricity demand and that this effect persists for a number of years. Our findings suggest that ratepayer-funded DSM expenditures between 1992 and 2006 produced a central estimate of 0.9 percent savings in electricity consumption over that time period and 1.8 percent savings over all years. These energy savings came at an expected average cost to utilities of roughly 5 cents per kWh saved when future savings are discounted at a 5 percent rate.energy efficiency, demand-side management, electricity demand

    Cost-Effectiveness of Electricity Energy Efficiency Programs

    Get PDF
    We analyze the cost-effectiveness of electric utility ratepayer–funded programs to promote demand-side management (DSM) and energy efficiency (EE) investments. We specify a model that relates electricity demand to previous EE DSM spending, energy prices, income, weather, and other demand factors. In contrast to previous studies, we allow EE DSM spending to have a potential long-term demand effect and explicitly address possible endogeneity in spending. We find that current period EE DSM expenditures reduce electricity demand and that this effect persists for a number of years. Our findings suggest that ratepayer funded DSM expenditures between 1992 and 2006 produced a central estimate of 0.9 percent savings in electricity consumption over that time period and a 1.8 percent savings over all years. These energy savings came at an expected average cost to utilities of roughly 5 cents per kWh saved when future savings are discounted at a 5 percent rate.

    Recent advances in plant early signaling in response to herbivory

    Get PDF
    Plants are frequently attacked by herbivores and pathogens and therefore have acquired constitutive and induced defenses during the course of their evolution. Here we review recent progress in the study of the early signal transduction pathways in host plants in response to herbivory. The sophisticated signaling network for plant defense responses is elicited and driven by both herbivore-induced factors (e.g., elicitors, effectors, and wounding) and plant signaling (e.g., phytohormone and plant volatiles) in response to arthropod factors. We describe significant findings, illuminating the scenario by providing broad insights into plant signaling involved in several arthropod-host interactions

    The Composite Effect of Transgenic Plant Volatiles for Acquired Immunity to Herbivory Caused by Inter-Plant Communications

    Get PDF
    A blend of volatile organic compounds (VOCs) emitted from plants induced by herbivory enables the priming of defensive responses in neighboring plants. These effects may provide insights useful for pest control achieved with transgenic-plant-emitted volatiles. We therefore investigated, under both laboratory and greenhouse conditions, the priming of defense responses in plants (lima bean and corn) by exposing them to transgenic-plant-volatiles (VOCos) including (E)-β-ocimene, emitted from transgenic tobacco plants (NtOS2) that were constitutively overexpressing (E)-β-ocimene synthase. When lima bean plants that had previously been placed downwind of NtOS2 in an open-flow tunnel were infested by spider mites, they were more defensive to spider mites and more attractive to predatory mites, in comparison to the infested plants that had been placed downwind of wild-type tobacco plants. This was similarly observed when the NtOS2-downwind maize plants were infested with Mythimna separata larvae, resulting in reduced larval growth and greater attraction of parasitic wasps (Cotesia kariyai). In a greenhouse experiment, we also found that lima bean plants (VOCos-receiver plants) placed near NtOS2 were more attractive when damaged by spider mites, in comparison to the infested plants that had been placed near the wild-type plants. More intriguingly, VOCs emitted from infested VOCos-receiver plants affected their conspecific neighboring plants to prime indirect defenses in response to herbivory. Altogether, these data suggest that transgenic-plant-emitted volatiles can enhance the ability to prime indirect defenses via both plant-plant and plant-plant-plant communications

    Identifying Potential Risks and Benefits of Using Cloud in Distributed Software Development

    Get PDF
    Cloud-based infrastructure has been increasingly adopted by the industry in distributed software development (DSD) environments. Its proponents claim that its several benefits include reduced cost, increased speed and greater productivity in software development. Empirical evaluations, however, are in the nascent stage of examining both the benefits and the risks of cloud-based in-frastructure. The objective of this paper is to identify potential benefits and risks of using cloud in a DSD project conducted by teams based in Helsinki and Ma-drid. A cross-case qualitative analysis is performed based on focus groups con-ducted at the Helsinki and Madrid sites. Participants’ observations are used to supplement the analysis. The results of the analysis indicated that the main ben-efits of using cloud are rapid development, continuous integration, cost savings, code sharing, and faster ramp-up. The key risks determined by the project are dependencies, unavailability of access to the cloud, code commitment and inte-gration, technical debt, and additional support costs. The results revealed that if such environments are not planned and set up carefully, the benefits of using cloud in DSD projects might be overshadowed by the risks associated with it.Peer reviewe

    Herbivore-induced terpenoid emission in Medicago truncatula: concerted action of jasmonate, ethylene and calcium signaling

    Get PDF
    Plant volatiles emitted by Medicago truncatula in response to feeding larvae of Spodoptera exigua are composed of a complex blend of terpenoids. The cDNAs of three terpene synthases (TPSs), which contribute to the blend of terpenoids, were cloned from M. truncatula. Their functional characterization proved MtTPS1 to be a β-caryophyllene synthase and MtTPS5 to be a multi-product sesquiterpene synthase. MtTPS3 encodes a bifunctional enzyme producing (E)-nerolidol and geranyllinalool (precursors of C11 and C16 homoterpenes) from different prenyl diphosphates serving as substrates. The addition of jasmonic acid (JA) induced expression of the TPS genes, but terpenoid emission was higher from plants treated with JA and the ethylene precursor 1-amino-cyclopropyl-1-carboxylic acid. Compared to infested wild-type M. truncatula plants, lower amounts of various sesquiterpenes and a C11–homoterpene were released from an ethylene-insensitive mutant skl. This difference coincided with lower transcript levels of MtTPS5 and of 1-deoxy-d-xylulose-5-phosphate synthase (MtDXS2) in the damaged skl leaves. Moreover, ethephon, an ethylene-releasing compound, modified the extent and mode of the herbivore-stimulated Ca2+ variations in the cytoplasm that is necessary for both JA and terpene biosynthesis. Thus, ethylene contributes to the herbivory-induced terpenoid biosynthesis at least twice: by modulating both early signaling events such as cytoplasmic Ca2+-influx and the downstream JA-dependent biosynthesis of terpenoids

    Topological Phase Transition and Electrically Tunable Diamagnetism in Silicene

    Full text link
    Silicene is a monolayer of silicon atoms forming a honeycomb lattice. The lattice is actually made of two sublattices with a tiny separation. Silicene is a topological insulator, which is characterized by a full insulating gap in the bulk and helical gapless edges. It undergoes a phase transition from a topological insulator to a band insulator by applying external electric field. Analyzing the spin Chern number based on the effective Dirac theory, we find their origin to be a pseudospin meron in the momentum space. The peudospin degree of freedom arises from the two-sublattice structure. Our analysis makes clear the mechanism how a phase transition occurs from a topological insulator to a band insulator under increasing electric field. We propose a method to determine the critical electric field with the aid of diamagnetism of silicene. Diamagnetism is tunable by the external electric field, and exhibits a singular behaviour at the critical electric field. Our result is important also from the viewpoint of cross correlation between electric field and magnetism. Our finding will be important for future electro-magnetic correlated devices.Comment: 4 pages,5 figure

    Beyond Hypergraph Dualization

    Get PDF
    International audienceThis problem concerns hypergraph dualization and generalization to poset dualization. A hypergraph H = (V, E) consists of a finite collection E of sets over a finite set V , i.e. E ⊆ P(V) (the powerset of V). The elements of E are called hyperedges, or simply edges. A hypergraph is said simple if none of its edges is contained within another. A transversal (or hitting set) of H is a set T ⊆ V that intersects every edge of E. A transversal is minimal if it does not contain any other transversal as a subset. The set of all minimal transversal of H is denoted by T r(H). The hypergraph (V, T r(H)) is called the transversal hypergraph of H. Given a simple hypergraph H, the hypergraph dualization problem (Trans-Enum for short) concerns the enumeration without repetitions of T r(H). The Trans-Enum problem can also be formulated as a dualization problem in posets. Let (P, ≤) be a poset (i.e. ≤ is a reflexive, antisymmetric, and transitive relation on the set P). For A ⊆ P , ↓ A (resp. ↑ A) is the downward (resp. upward) closure of A under the relation ≤ (i.e. ↓ A is an ideal and ↑ A a filter of (P, ≤)). Two antichains (B + , B −) of P are said to be dual if ↓ B + ∪ ↑ B − = P and ↓ B + ∩ ↑ B − = ∅. Given an implicit description of a poset P and an antichain B + (resp. B −) of P , the poset dualization problem (Dual-Enum for short) enumerates the set B − (resp. B +), denoted by Dual(B +) = B − (resp. Dual(B −) = B +). Notice that the function dual is self-dual or idempotent, i.e. Dual(Dual(B)) = B

    Intermittent exposure to traces of green leaf volatiles triggers a plant response

    Get PDF
    Plants are known to mount a defensive response when exposed to volatile chemicals from other plants, but the critical concentration required for this response is not known. We showed that intermittent exposure over a period of 3 weeks to trace amounts (less than 140 pptV) of green leaf volatiles emitted by a freshly damaged Arabidopsis plant induced physiological (defensive) responses in undamaged neighbouring plants. These results demonstrated that plants can respond to long-term repeated exposures to subcritical amounts of chemical signals
    corecore