
1616 P St. NW 
Washington, DC 20036 
202-328-5000   www.rff.org   

 

November 2009      RFF DP 09-48        

 

Cost-Effectiveness of 
Electricity Energy 
Efficiency Programs  
 

Tosh i  H .  Ar imura ,  R ichard  G .  New e l l ,  and   

Karen  Pa lmer   

 

 

 

 

D
IS

C
U

SS
IO

N
 P

A
PE

R 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/9304579?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

© 2009 Resources for the Future. All rights reserved. No portion of this paper may be reproduced without 
permission of the authors. 

Discussion papers are research materials circulated by their authors for purposes of information and discussion. 
They have not necessarily undergone formal peer review. 

Cost-Effectiveness of Electricity Energy Efficiency Programs  

Toshi H. Arimura, Richard G. Newell, and Karen Palmer  

Abstract 
We analyze the cost-effectiveness of electric utility rate payer–funded programs to promote 

demand-side management (DSM) and energy efficiency investments. We develop a conceptual model 
that relates demand growth rates to accumulated average DSM capital per customer and changes in 
energy prices, income, and weather.  We estimate that model using nonlinear least squares for two 
different utility samples. Based on the results for the most complete sample, we find that DSM 
expenditures over the last 18 years have resulted in a central estimate of 1.1 percent electricity savings at 
a weighted average cost to utilities (or other program funders) of about 6 cents per kWh saved. 
Econometrically-based policy simulations find that incremental DSM spending by utilities that had no or 
relatively low levels of average DSM spending per customer in 2006 could produce 14 billion kWh in 
additional savings at an expected incremental cost to the utilities of about 3 cents per kWh saved. 
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Cost-Effectiveness of Electricity Energy Efficiency Programs   

Toshi H. Arimura, Richard G. Newell, and Karen Palmer∗ 

1. Introduction 

Utility programs to reduce demand for electricity have been in existence since the late 
1970s following the two energy crises of that decade. Several pieces of federal legislation passed 
in the late 1970s encouraged utilities to develop programs to promote energy efficiency and 
reduce demand in peak periods, and the Public Utilities Regulatory Policies Act of 1978 required 
state Public Utility Commissions to take account of these programs in setting consumer rates for 
electricity. Programs took off in the early 1990s with U.S. utilities spending a total of nearly $2.0 
billion dollars (2007$) on energy efficiency demand-side management (DSM) programs in 
1993.1 After 1993, the peak year of utility spending on DSM according to the Energy 
Information Administration (EIA), electric utility spending on energy conservation and DSM 
started to decline as electricity markets were being restructured to introduce more competition, 
and expenditures on efficiency programs were reduced or eliminated as utilities sought to reduce 
costs. In some states, the move to competition was accompanied by the establishment of wires 
charges, known as system benefit charges or public benefit charges, which were used to fund 
continued investment in energy efficiency. 

After nearly three decades of experience with DSM, a good deal of controversy remains 
over how effective these programs have been in reducing electricity consumption and at what 
cost those consumption reductions have been obtained. Estimates of the cost-effectiveness, or 
cost per kWh saved, of past DSM programs range from just below 1 cent per kWh saved to more 

                                                 
∗ Toshi Arimura is Associate Professor, Sophia University, Tokyo, Japan (t-arimu@sophia.ac.jp). Richard G. 
Newell completed his work on this paper as the Gendell Associate Professor of Energy and Environmental 
Econmics at Duke University, Nicholas School of the Environment, Box 90227, Durham, NC 27708 
(richard.newell@duke.edu). Newell is now on leave from Duke University and is the Administrator of the U.S. 
Energy Information Administration. Karen Palmer is a Senior Fellow at Resources for the Future (palmer@rff.org). 
The authors appreciate the very helpful research assistance of Maura Allaire, Yatziri Zepeda Medina,  Kazuyuki 
Iwata, Erica Myers, and John Mi. The authors thank Max Auffhammer, Carl Blumstein, Joseph Bryson, Peter 
Cappers, Joseph Eto, Kenneth Gillingham, Chuck Goldman, Marvin Horowitz, Peter Larsen, Joseph Loper, Steve 
Nadel, Alan Sanstad, and Anant Sudarshan for helpful comments and suggestions. This research was funded in part 
by the Resources for the Future Electricity and Environment Program, and a special gift to Resources for the Future 
from Exelon for work on energy efficiency.  Toshi Arimura thanks the Abe Fellowship for financial support. 
1 In 1993, total DSM spending, including spending on load management, was about $3.7 billion dollars. 
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than 20 cents.2 Estimates of energy savings have been derived using a variety of different 
methods and are subject to varying degrees of uncertainty, depending on the ability of program 
evaluators to account for human behavior in engineering models that estimate energy savings, 
including free-riding participants and countervailing spillovers to nonparticipants. Nationwide, 
DSM programs have only a modest impact on electricity demand. According to the 2008 Annual 
Energy Review (EIA 2008), utilities reported that DSM programs produced energy savings in 
2007 equal to approximately 1.8 percent of total electricity demand.3 Savings estimates vary 
somewhat across the states.  Data from the California Energy Commission (CEC 2008) suggests 
that current and past utility DSM programs across the state saved 1.8 percent of commercial and 
residential electricity consumption or 1.2 percent of total electricity consumption in 2005.4  
However, Efficiency Vermont reports incremental savings from their efficiency programs in 
2008 of 2.5 percent of total electricity sales in the state (Efficiency Vermont 2008). 

With increasing electricity prices, concerns about the continued reliability of electricity 
supply, and growing interest in limiting emissions of greenhouse gases that contribute to climate 
change, utilities, policymakers, and environmental groups have shown renewed interest in 
policies and programs to promote energy efficiency. In 2006, a group representing utilities, state 
regulators, environmentalists, industry, and federal government employees, coordinated by the 
U.S. Environmental Protection Agency and the U.S. Department of Energy (DOE), published the 
National Action Plan for Energy Efficiency, which includes a call for more funding of cost-
effective energy efficiency. Several states are adopting regulatory rules, including revenue 
decoupling and financial performance incentives, to reward the utilities in their jurisdictions that 
invest in cost-effective energy efficiency programs. The governors of some states, including 
Maryland and New York, have announced specific electricity reduction goals that seek to reduce 
electricity consumption (or consumption per capita) relative to current levels by a target year in 
the future. Exactly how these goals will be achieved is yet to be determined, but several of the 

                                                 
2 See Gillingham, Newell and Palmer (2006) for more information on the ranges of estimates of cost per kWh saved 
across different studies. 
3 Authors’ calculation based on the ratio of total energy savings from DSM programs reported in Table 8.13 and 
total energy demand reported in Table 8.1 of the Annual Energy Review 2008 (EIA 2008). Reid (2009) breaksdown 
these numbers by utility and finds that the top 10 utilities in terms of savings all reported cumulative effects of 
energy efficiency programs in excess of 10 percent. 
4 Calculation based on electricity consumption savings to commercial and residential customers in 2005 attributable  
to cumulative utility and public agency programs reported in table 6 of CEC (2008) divided by total 2005 sales 
reported in Form 1.1 (CEC 2008). 
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states participating in the Regional Greenhouse Gas Initiative are planning to use a substantial 
portion of the revenue from carbon dioxide (CO2) allowance auctions to fund DSM initiatives.5 
Several federal legislative proposals to impose a national CO2 cap-and-trade program also 
include provisions to encourage utilities and states to adopt energy efficiency resource standards 
to help increase the role of energy efficiency in meeting emissions reduction goals. 

As policymakers try to identify the most effective policies and programs to secure cost-
effective energy savings, understanding the effectiveness and cost-effectiveness of past policies 
and programmatic initiatives becomes particularly important. In this paper, we analyze the 
effects of rate payer–funded utility and third-party DSM spending on electricity demand growth 
at the utility level. We also explore the effects on electricity consumption of decoupling 
regulation and building energy efficiency codes.   

Based on our results using the largest sample of utilities, our findings suggest that, over 
the 18-year period covered by this analysis, rate payer–funded DSM expenditures produced a 
central estimate of 1.1 percent savings in electricity consumption at an expected average cost to 
utilities of roughly 6.4 cents per kWh saved. Using a nonparametric bootstrapping approach, we 
find that the 95 percent confidence interval for savings ranges from 0.6 percent to 1.4 percent, 
whereas the 95 percent confidence interval for average cost ranges from 4.4 to 10.9 cents per 
kWh. Our econometric results also allow us to parameterize functional relationships between (a) 
the percentage savings and the average level of DSM expenditure per customer and (b) the 
average cost of savings and both the average level of DSM expenditure per customer and the 
average amount of electricity consumed per customer. These functions suggest that the 
percentage of electricity savings is an increasing but concave function of average DSM spending 
per customer, and that the average cost varies roughly linearly with expenditures. Putting these 
two functions together allows us to trace out an average cost curve for percentage reductions in 
electricity consumption that is increasing and convex. Focusing on a representative utility with 
consumption per customer equal to the 2006 average level of 25 MWh, this average cost function 
suggests that a 1.5 percent electricity savings can be achieved at an expected average cost to the 
utility of roughly 4.5 cents per kWh saved. Moreover, simulations suggest that increasing utility 
DSM spending by $440 million at those utilities in our sample that spent less than $10 per 

                                                 
5 The Regional Greenhouse Gas Initiative (RGGI) states see investment in DSM as a way to help offset the impacts 
of the regional climate policy on electricity consumers and potentially to reduce the likelihood that power imports 
from non–RGGI states will increase under the program (RGGI 2008).   
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customer on average in 2006 would have resulted in 14 billion kWh of additional savings at an 
expected incremental cost of 3.1 cents per kWh. 

The rest of the paper is organized as follows. Section 2 includes a review of past 
empirical studies on DSM and energy efficiency. Section 3 discusses the effects of electricity 
sector restructuring on DSM programs and the growing role for programs operated by third 
parties. Section 4 develops the conceptual model that underlies our calculations of predicted 
energy savings and their costs, and Section 5 discusses the explanatory variables included in the 
empirical application of that model. We discuss the results of the estimation and some associated 
policy simulations in section 6, and section 7 concludes. 

2. Empirical Economic Studies of DSM 

Several empirical economic studies have evaluated the effectiveness and cost-
effectiveness of utility DSM. Utility DSM includes programs such as information programs (e.g. 
free energy audits), low cost financing and financial incentives or subsidies for purchase of more 
energy efficiency equipment.  Much of this literature is reviewed by Gillingham, Newell and 
Palmer (2006, 2009), which uncover a range of estimates of both the effectiveness and cost-
effectiveness of these programs. The studies that use ex post econometric analysis tend to find 
higher costs per unit of electricity saved than those that rely largely on ex ante engineering-
costing methods. For example, an early study by Joskow and Marron (1992) suggests that failure 
to account for free riders, overly optimistic estimates of equipment lifetimes, and underreporting 
of cost lead utilities to tend to overstate the cost-effectiveness of DSM programs by a factor of at 
least two. However, a subsequent study by Parformak and Lave (1996) using data from a subset 
of utilities in the Northeast and California finds that 99 percent of utility-reported estimates of 
savings from DSM are borne out in actual metered data on energy use after controlling for the 
effects of prices, weather, and economic activity.  In a similar vein, Eto et al. (1996) analyze data 
from 20 large utility-sponsored energy efficiency programs and develop a consistent approach to 
measuring savings and costs.  They conclude that all the programs that they analyze are cost 
effective conditional on the underlying assumptions about economic lifetimes of the identified 
energy savings and the level of avoided costs of generation. 

Specific estimates of cost-effectiveness from the prior literature range from 0.9 to 25.7 
cents per kWh saved. (All cost estimates are reported in 2007$.) The estimate at the low end of 
this range comes from Fickett et al (1990). Nadel (1992) offers a range of estimates for utility 
programs of 2.9 – 7.5 cents per kWh saved. Estimates of others tend to fall within this range. Eto 
et al (2000) report an estimate of 4.2 cents per kWh saved. Nadel and Geller (1996) report both 
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costs to utilities (3.0–4.7 cents per kWh saved) and costs to utilities plus consumers (5.4–8.0 
cents per kWh saved). Friedrich et al. (2009) use utility and state evaluations and regulatory 
reports on energy savings and utility costs for 14 states to develop an average estimate of the 
average cost to utilities of 2.5 cents per kWh saved. 

The cost estimates at the high end of the range come from a more recent study by 
Loughran and Kulick (2004; hereafter L&K). L&K analyze the effects of changes in DSM 
expenditures on changes in electricity sales using utility-level panel data over the time period 
from 1992 through 19996. They find that the DSM programs are less effective and less cost-
effective than utility-reported data would suggest, with their estimates of costs ranging from 7.1 
to 25.8 cents per kWh saved coming in at between 2 and 6 times as high as utility estimates. 
These high cost estimates follow primarily from their finding that the savings attributable to 
DSM programs indicated by the econometrics are substantially smaller than those directly 
reported by utilities, suggesting a substantial amount of free riding. However, these cost 
comparisons rely on the application of predicted values of percentage savings to mean levels of 
electricity demand to calculate average savings; therefore, they do not represent an appropriately 
weighted national average cost. A reevaluation of the L&K econometric results by Auffhammer, 
Blumstein and Fowlie (2008; hereafter ABF), which weights savings and costs by utility size in 
the construction of a mean cost-effectiveness measure, finds a substantially lower estimate of 
cost per kWh than reported by L&K—a result not disputed by L&K. In their work, ABF find 
DSM expenditure-weighted average cost estimates that range from 5.1 to 14.6 cents per kWh. 
Their reevaluation also accounts for the uncertainty surrounding the model predictions to 
construct confidence intervals for L&K estimates of predicted energy savings from DSM, which 
ABF find contain the utility-reported estimates. ABF point out that the appropriately weighted 
L&K findings are not statistically significantly different from those reported by the utilities in 
their sample.  

In another recent study, Horowitz (2007) uses a difference-in-differences approach to 
determine whether changes in electricity demand and electricity intensity from the pre-1992  
(1977 – 1992) to the post-1992 (1992 – 2003) period for residential, commercial, and industrial 
electricity users were stronger for utilities with a strong commitment to DSM than for those with 
a less strong or weak commitment. In this analysis, Horowitz uses measures of reported 

                                                 
6 Some specifications focus on a shorter time period because of the limited availability of certain explanatory 
variables.   
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electricity savings attributable to DSM programs to categorize utilities. He finds that utilities 
with strong DSM programs see a bigger decline in energy intensity among all classes of 
customers and in total energy demand among industrial and commercial customers. Horowitz 
does not look at the question of cost-effectiveness.    

Our analysis uses the basic approach of L&K as a starting point, but modifies and 
augments this earlier work in several important ways. First, we augment the data set to include 
data on utility DSM spending through 2006. Second, we incorporate spending on DSM by “third 
party” state agencies or independent state-chartered energy efficiency agencies tasked with using 
revenues collected from utility rate payers to implement energy efficiency programs. Third, we 
explore the influence of decoupling regulations and the stringency of state-level residential 
building codes in the region where each utility operates. Fourth, following ABF, we calculate 
confidence intervals for our estimates of percentage savings and cost effectiveness. Finally, we 
model percentage electricity savings as a function of average DSM expenditures per customer, 
rather than the level of DSM expenditures. Normalizing expenditures in this way better 
represents the relationship of DSM expenditures and associated electricity savings across utilities 
of widely differing scale. We also tie our empirical specification clearly to a conceptual model of 
electricity demand, carefully lay out the derivation of our estimated cost-effectiveness measures, 
and make a number of other improvements in estimation compared to previous studies, as 
described further below.  

3. Evolution of Rate Payer–Funded DSM in an Era of Electricity Restructuring 

During the late 1990s, the electric utility industry was in the midst of an important 
transition to greater competition. The 1992 Energy Policy Act required the Federal Energy 
Regulatory Commission (FERC) to devise rules for opening the transmission grids to 
independent power producers to sell electricity in the wholesale markets under its jurisdiction. In 
1996, FERC issued Orders 888 and 889 to comply with its mandate (Brennan 1998). In the wake 
of the opening of transmission, several states began to give customers a choice of electricity 
suppliers. In 1994, California became the first state to begin restructuring its utility industry, and 



Resources for the Future Arimura, Newell, and Palmer 
 

7 

by 2000, a total of 23 states and the District of Columbia had passed an electric industry 
restructuring policy and opened up their electricity markets to greater competition.7  

The prospect of competition and restructuring had a negative impact on utility DSM 
spending as utilities started to shed all discretionary spending to be better able to compete with 
new entrants that did not offer such programs. The regulatory environment also became less 
favorably disposed toward DSM programs as regulators shifted emphasis away from the 
integrated resource planning approach that often created incentives to invest in DSM rather than 
in new generation capacity. In the new regulatory environment, price caps and greater reliance 
on markets for setting electricity prices created strong incentives for utilities to cut costs and seek 
new opportunities to increase profits by increasing electricity sales, both of which served to 
diminish incentives for DSM programs (Nadel and Kushler 2000). The resulting effect on DSM 
expenditures over the course of the 1990s can be seen in Figure 1, which shows a substantial 
decline in utility DSM spending directed toward energy efficiency between 1993 and 1998.8 

In anticipation of a decline in utility DSM spending in the wake of electricity 
restructuring, a number of states established mechanisms to replace utility programs as part of 
the restructuring process (Eto et al. 1998). The most common approach has been to establish a 
public benefit fund to pay for DSM and other public benefit programs, such as renewable energy 
promotion, research and development, and low-income assistance, as a part of restructuring 
legislation or enabling regulation (Nadel and Kushler 2000). Typically, these programs are 
funded by a per-kWh wires charge on the state-regulated electricity distribution system 
(Khawaja, Koss, and Hedman 2001). These wires charges are often referred to as systems benefit 
charges or public benefit charges.  

According to the American Council for an Energy Efficient Economy (2004), 23 states 
have policies encouraging or requiring public benefit energy efficiency programs that were in 
effect during some portion of our data sample period. Most of these programs are administered 
by the distribution utilities and thus presumably are captured in the EIA energy efficiency 
spending data by utility. However, in nine states — Illinois, Maine, Michigan, New Jersey, New 

                                                 
7 Note that since 2000 the spread of electricity restructuring has stalled and even reversed itself with the California 
Public Utility Comission suspending retail competition in that state in March 2002 and the Virginia state legislature 
rejecting retail competion for Virginia electricity consumers in 2007. 
8 Note that Figure 1 includes only the portion of DSM spending used for energy efficiency and thus excludes 
expenditures on load management, load building, and indirect expenditures. 
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York, Ohio, Oregon, Vermont, and Wisconsin — these public benefit efficiency programs are 
administered either by a state government entity (e.g., state energy office) or a for-profit or non 
profit, third party administrator and therefore potentially excluded from the EIA data. We refer to 
these as third-party DSM programs. The aggregate level of spending by these state-level third-
party energy efficiency programs is shown by year in Figure 1, as is their effect on total national 
rate payer–funded DSM expenditures.9 Note that, although these programs have not fully offset 
the decline in utilities’ own spending on DSM, they have partially filled the gap.  

4. A Conceptual Model of Electricity Demand and Energy Savings from DSM 

 Our aim in this paper is to estimate an empirical model of electricity demand change in 
response to multiple factors that is consistent with an underlying conceptual model of electricity 
demand. This linking of empirics with a clear conceptual model is important both for selecting 
relevant explanatory variables and for determining how those variables, particularly variables 
related to DSM, should appear in the empirical model. Based on the estimated model, we 
compute estimates of energy savings from DSM, the cost-effectiveness of DSM, and confidence 
intervals for these measures using a nonparametric bootstrap approach. 

4.1 Estimating Electricity Demand Growth as a Function of DSM and Other 
Variables 

We begin by specifying an aggregate Cobb–Douglas electricity demand function for the 
customers of each utility u in each year t 

  

(1) ( )( ), exp , ,f
ut f ut ut ut ut utQ p Y W g K R tα λ ρ=  

where utQ  is aggregate electricity demand; ,f utp  is a vector of fuel prices for electricity, natural 

gas, and oil; utY  is a vector of energy service demand shifters (e.g., level of economic activity 
and number of customers); utW  is weather; g is a function; utK  is the level of DSM energy 
efficiency capital per customer; utR  is a vector of other regulatory variables influencing 

                                                 
9 Note that in constructing the total line in this graph, we add third-party expenditures to utility-level expenditures 
only when there are no reported utility-level expenditures. We can therefore be certain that the utility-reported 
expenditures do not include money expended by the utility, but obtained from the funds managed by a third-party 
administrator.  To assume otherwise would potentially double-count this DSM spending, and in our data we found 
evidence that third party spending through utilities is in fact reported by utilities in the EIA form 861. 
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electricity energy efficiency and demand; and t represents a vector of year effects. 10The key 
variable of interest in this demand function is utK . Taking logs of both sides yields the linear 

function 

(2) ( ),ln( ) ln ln ln , ,ut f f ut ut ut ut ut
f

Q p Y W g K R tα λ ρ= + + +∑  

Following L&K and many other energy demand studies, we estimate a model in first-
difference form, thereby controlling for unobserved utility-specific attributes that could 
otherwise lead to omitted variable bias 

(3) ( )
, 1 , 1 , 1 , 1

ln ln ln lnftut ut ut
f ut ut u

fu t f t u t u t

pQ Y W f K R t
Q p Y W

α λ ρ ω θ ε
− − − −

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + + + Δ + + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

∑  

where f is a function, utKΔ  is DSM augmentation of energy efficiency capital, and ε is an error 
term. We assume that utKΔ  is a function of current and past average rate payer–funded DSM 
energy efficiency investments per customer, utD , and we allow for diminishing returns in the 

relationship between DSM capital and energy demand reductions through an exponential form 

(4) ( )( ),
0, 1 , 1 , 1 , 1

ln ln ln ln 1 exp
n

ftut ut ut
f j u t j ut u

f ju t f t u t u t

pQ Y W D R t
Q p Y W

α λ ρ β γ ω θ ε−
=− − − −

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + + + − + + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑  

where ,u t jD −  is the average level of DSM expenditure per customer in year t–j , j indicates lags, 

and n is the maximum number of lags included. Because we are estimating a model to predict 
percentage changes in demand, we use average DSM spending per customer (as opposed to 
simply the level of DSM). Otherwise, the effect on kWh saved of an additional dollar of DSM 
spending would be larger for larger utilities, which is conceptually incorrect. The functional form 
specification for D allows for percentage savings to depend in a flexible manner on average 
DSM spending per customer, where the βj give the individual effects of current and past DSM 
expenditures, and γ gives the rate of diminishing (or increasing) returns (Jaffe and Stavins 1995). 
The rate of diminishing returns increases as γ gets large, whereas the function becomes linear 
(i.e., constant returns to DSM) as γ gets small.  We would expect both γ and βj to be negative if 

                                                 
10 In this research we initially explored a functional form that was more similar to that used by L&K in that DSM 
expenditures entered in a log form, but still using DSM per customer for reasons explained below.  However, we 
found that the results obtained using this specification were highly dependent on the treatment of observations with 
zero DSM spending. Entering DSM expenditures in log form also lead to very extreme curvature of the percent 
savings as a function of DSM expenditures and in turn of the average cost function described below. 
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increased DSM spending lowers energy consumption, but at a diminishing rate. Neither value is 
imposed, but is rather estimated from the data. We also do not constrain the individual βj 
coefficients on lagged DSM expenditures to take on any particular form, allowing instead for a 
flexible depreciation structure. The chosen function therefore balances the need for parsimony, 
with the desire to allow for both a lasting, flexible DSM effect and the potential for diminishing 
(or increasing) returns. 

4.2 Computing Predicted Energy Savings from DSM 

Next we show how equation (4), once estimated, can be transformed to yield expressions 
for expected percentage electricity savings resulting from different average levels of DSM 
expenditures per customer as well as the associated average cost of achieving those savings. 
Because the model is estimated in log differences, which approximate percentage changes,11 the 
estimated year t percentage energy savings at utility u attributable to current and past DSM 
spending , % utS ,is given by the terms involving D 

(5) ( )( ),
0

% 1 exp
n

ut j u t j
j

S Dβ γ −
=

= − −∑  

where the minus sign indicates demand reductions.
 
Note that the electricity savings in any given 

year are the result of current and previous years’ DSM expenditures. We can use the estimated 
jβ  and γ  coefficients to predict the cumulative percentage savings at utility u in the current and 

subsequent years attributable to DSM expenditures at that utility in year T. 
 

(6) ( )( )
0

% 1 exp
n

uT j uT
j

S Dβ γ
=

= − −∑  

To calculate an aggregate estimate of electricity savings and cost-effectiveness from 
DSM across utilities and time, it is necessary to translate percentage savings into a level of 
savings (in kWh) by multiplying by the level of electricity demand, utQ   

(7) ( )( ), ,
0

1 exp
n

uT j u T u T j
j

S D Qβ γ +
=

= − −∑  

                                                 
11 We found empirically that the predicted changes were sufficiently small that log differences very closely 
approximated percentage savings. We also found that the Goldberger (1968) correction for the expected level values 
of log-form equations was extremely close to 1. For simplicity, we therefore do not include these subtleties here.  
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Equation (7) gives a predicted energy savings from DSM for each observation in the sample. 

One can also compute an overall percentage savings estimate by summing energy savings across 

all utilities and years, and dividing by the sum of demand
 

(8)  %
uT

u T

uT
u T

S
S

Q
=

∑∑
∑∑

 

Note that L&K and ABF report alternative summary statistics for aggregating savings and costs 
across utilities and time, including unweighted means. We agree with ABF that the alternative 
unweighted measures are misleading and we therefore do not report them here.  

4.3 Computing DSM Cost-Effectiveness 

By dividing total DSM expenditures in year T by uTS , one can measure the cost-
effectiveness of DSM expenditures, uTAC , for each observation 

(9) uT uT
uT

uT

D CAC
S

=  

where recall that D, average DSM spending per customer, must be multiplied by C, the number 
of customers, to yield total spending. 

 One can also compute an overall cost-effectiveness estimate by summing DSM 
expenditures across all utilities and years, and dividing by the sum of energy savings from DSM 

(10) 
 

ut uT
u T

uT
u T

D C
AC

S
=

∑∑
∑∑  

Finally, using the simplified savings function of equation (6) along with (9), the average 
cost of energy savings at a utility with DSM expenditures, uD , and a benchmark level of 
electricity sales per customer, u uQ C , is 

(11) ( )%u u u u uAC D S Q C= ⎡ ⎤⎣ ⎦  

We use equation (11), along with (6), to illustrate our main findings.  

5. Estimation Variables and Data Sources   

We estimate the model specified in equation (3) above using a panel of annual utility-
level data from EIA Form 861 Annual Electric Power Industry Report and other sources over the 
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18-year period 1989–2006, with the observations in the estimation sample starting in 1994–1995 
because of the role of lagged DSM expenditures in the model. Thus, our panel covers a period 
roughly twice as long as that of L&K. The definitions of the variables are shown in Appendix 
Table A-1 and are described below. All dollar values are converted from nominal to real using 
the gross domestic product (GDP) deflator. Summary statistics appear in Table 1. 

Our main sample, sample 1, has 3,155 observations (513 utilities), whereas our more 
constrained sample, sample 2, has 1,614 observations (189 utilities). Sample 1 includes all 
utilities in the lower 48 states that meet the minimum size criteria for reporting DSM 
expenditures throughout the sample period and excludes utilities with no residential customers.12 
Sample 2 includes the subset of utilities with at least 10 years of experience with DSM reporting, 
defined as those utilities that have nonmissing values for DSM expenditures for at least 10 
years.13   

5.1 Electricity Demand and DSM Expenditures  

Data on utility-level electricity sales, DSM spending, and number of customers are from 
Form EIA-86114. Like L&K, we use as our measure of utility spending on energy efficiency 

                                                 
12 Under Form EIA-861, utilities with sales to both ultimate consumers and resale less than 120,000 MWh were not 
required to report energy efficiency expenditures through 1997. The threshold became 150,000 MWh in 1998; we 
therefore exclude all utilities with less than 150,000 MWh. Further, following L&K, we do not include utilities in 
Alaska, the District of Columbia, Hawaii, or the U.S. territories.   We also drop observations that have missing 
values for  DSM expenditures during the estimation process. 
13 We also ran the model using two other samples that were substantially smaller:  one including all utilities that had 
at least 10 years of positive DSM expenditures and another including only those utilities that had at least 15 years of 
positive DSM expenditures.  These two samples had substantially fewer significant coefficients and some significant 
coefficients of the wrong sign, yielding a confidence interval for average percentage savings for the sample that 
included negative values. 
14 Analysts have raised some concerns about the quality of the utility level data on energy efficiency collected on 
EIA-861, including missing values for expenditures in some years for large utilities and a lack of consistency across 
utilities in what gets reported for both expenditures and savings measures, particularly the annual savings (Horowitz 
2004, York and Kushler 2005, Reid 2009). Note that we do not use the EIA-861 energy savings data for our 
econometric analysis. Early in the course of this research, we also attempted to identify and correct shortcomings in 
the expenditures data, drawing on other sources including ACEEE and the Consortium for Energy Efficiency that 
have sought to fill in missing expenditures in certain years or collect their own data.  However, we were unable to 
use those data because they did not have a sufficient degree of detail and time coverage necessary for our analysis. 
So we proceeded solely with the EIA data. Nonetheless, we did carefully check the EIA data and eliminated a 
number of outliers, including observations with year-to-year growth in demand or total customers in excess of 30 
percent (due to mergers, acquisitions, and other factors) and utilities with no residential customers. While we believe 
there may be measurement error associated with the energy efficiency DSM expenditures reported to EIA, we do not 
believe it introduces a systematic bias to our analysis.   
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DSM that portion of DSM expenditures that utilities report as being devoted specifically to 
energy efficiency, as opposed to load management, load building, or indirect costs.15 To be as 
comprehensive as possible in our treatment of rate payer–funded DSM energy efficiency 
programs, we also include third-party state-level DSM programs that have come into being post-
restructuring.16 We share state-level third-party DSM expenditures to the utility level using each 
utility’s share of total customers within the state. Given that comparisons of third-party DSM 
expenditure data shared to the utility and utility-reported DSM expenditures suggest that there is 
some overlap, we only include third-party expenditures in the analysis when the utility-reported 
DSM expenditures are zero or missing.17 As noted in section 4, we normalized DSM 
expenditures by number of customers at the utility in order to control for size.  Finally, note that 
conducting the analysis at the utility level means that we are able to pick up the effects of intra-
utility spillovers that would result when customers who do not participate in a program actually 
make investments in efficient equipment on their own and thus reduce their electricity 
consumption at no cost to the program. 

5.2 Decoupling Regulation  

To test whether state-level revenue decoupling regulation leads to reduced demand 
growth, we include a categorical variable indicating its presence.18 Because of the way electricity 
is priced in most places, many of the fixed costs of delivering electricity are recovered in per-
kWh charges. This means that programs that are effective at reducing electricity consumption 

                                                 
15 Note that utilities did not report expenditures for energy efficiency separately until 1992, so we use the energy 
efficiency share of total DSM expenditures by utility in 1992 to impute values for energy efficiency–related 
expenditures in prior years to use as lagged measures of energy efficiency DSM expenditures.  
16 From a variety of sources, we were able to collect data on energy efficiency expenditures for third-party programs 
for only eight states and these data are reported in Appendix Table A-2, which shows the annual DSM expenditures 
by each program). When constructing these data, we did our best to match the categories of expenditures included in 
the energy efficiency portion of DSM spending reported by utilities to the expenditures reported by third parties, but 
such parsing of the third-party data into the portion that is directly comparable to the EIA definition of energy 
efficiency spending was not always possible.  To the extent that we overrepresent the relevant category of energy 
efficiency spending, that would tend to bias our cost-effectiveness estimates upward.We were unable to obtain data 
on energy efficiency spending by the public benefit fund administrator in Ohio and thus we exclude the Ohio 
utilities from our estimation for the years 2000 and beyond.  
17  A linear regression of utility-reported DSM expenditures on third-party DSM expenditures shared to the utility 
level yields a coefficient of 1, suggesting that these third-party expenditures may be incorporated into utility reports. 
18 Another approach is lost revenue recovery, which allows utilities to raise prices to compensate them for revenues 
from sales that utilities can show were lost as a result of DSM programs.  Unfortunately, data on the presence and 
form of state rules governing lost revenue recovery are not available for several of the years in our sample. 
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could also reduce revenues that are used to recover fixed costs, potentially creating losses for the 
utilities that offer DSM programs. In some states, regulators have allowed the utilities that they 
regulate to recover the relevant portion of lost revenues to eliminate disincentives for offering 
DSM programs. One such approach is revenue decoupling, so named because it decouples the 
portion of utility revenues dedicated to recovering fixed distribution costs from the amount of 
electricity that the utility sells. Note that because our data end in 2006, we do not incorporate the 
recent dramatic increase in the adoption of decoupling regulation at the state level.19 

5.3 Building Energy Efficiency Codes  

Previous studies of DSM have not examined the effects of building codes on electricity 
demand.20 As a result, if building code stringency is positively correlated with average DSM 
expenditures per customer,21 a portion of the energy savings caused by building codes may be 
attributed to DSM spending, which would result in an underestimate of the cost per kWh 
savings.22 We address this issue by including a series of categorical variables to characterize the 
stringency of building codes within each state during each year. We obtained data on the 
evolution of energy building codes from the Building Codes Assistance Project (www.bcap-
energy.org) and the DOE Building Energy Codes Program (www.energycodes.gov). See Figure 
2 for a map of current building code stringency, which shows the western states, such as 
California and Washington, with the most stringent building codes and Midwestern states with 
typically less stringent codes. 

We began by creating six categories of building code stringency, which, in order of 
decreasing stringency, are: (a) code met or exceeded the 2006 International Energy Conservation 
Code (IECC) or equivalent and was mandatory statewide; (b) code met 2003 IECC or equivalent 

                                                 
19 The decoupling indicator that we use is for the state where the utility has the majority of its sales.  We also 
estimated an alternative model that used a weighted average of the decoupling indicator across all the states where a 
utility does business. We found no statistically significant effect for that weighted decoupling variable. 

20 Jaffe and Stavins (1995) examined the effectiveness of building codes using a cross-sectional data set, finding no 
significant effect of building codes on energy demand in their analysis.  
21 In our sample, we find a small positive correlation of building code stringency and DSM expenditures per 
customer. 
22 In some cases, however, such attribution may not be so far off.  A significant issue with building codes is 
compliance, and for some utilities in some years, a portion of DSM expenditures may be devoted to improving 
compliance with residential building codes.  In these cases DSM could increase the potential for building codes to 
yield savings. 
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and was mandatory statewide; (c) code met the 1998–2001 IECC or equivalent and was 
mandatory statewide; (d) code preceded the 1998 IECC or equivalent and was mandatory 
statewide; (e) significant adoptions in jurisdictions, but not mandatory statewide; and (f) none of 
the aforementioned conditions hold and no significant adoptions of building codes in the state. 
After speaking with a building codes expert, we further consolidated these into four categories to 
represent more substantial differences in stringency: BC1 indicates the stringency is (a) above; 
BC2 indicates the stringency is (a)–(d) above; BC3 indicates the stringency is (a)–(e) above; the 
fourth (excluded) category is category (f).23 Thus, the variables are structured to indicate the 
incremental effect of building codes compared to the next most-stringent category.  

5.4 Energy Prices and Other Variables  

The annual average price of electricity by state also comes from Form EIA-861.24 
Residential natural gas and fuel oil prices by state also come from EIA. We compiled state-level 
data on several other variables from a variety of sources. Annual state-level GDP comes from the 
Bureau of Economic Analysis. Data on population-weighted heating and cooling degree days by 
state are from the National Oceanic and Atmospheric Administration (NOAA). These data are 
summed to construct a single climate variable.25 Data on state-level housing starts are from 
Mitsubishi Bank (Bank of Tokyo-Mitsubishi UFJ, Ltd.). Some utilities operate in multiple states 
and separately report sales of electricity for each of the states in which they operate. We sum 
these sales to a utility-level total for our dependent variable. This is necessary because the energy 
efficiency DSM expenditures from Form EIA 861 are only available at the utility level and not 
broken down by state. For variables that are only available at the state level (i.e., energy prices, 

                                                 
23 We also obtained data on energy efficiency codes for commercial buildings. However, we found a high 
correlation between the residential and commercial building code stringency, and so chose to focus on a single 
measure of stringency.  
24 Electricity prices can vary substantially across utlities within a state and our price data will not reflect this intra-
state variation in price levels where it exists  However, given the potential for endogeneity introduced by using utlity 
level price data, and the fact that our analysis focuses on changes in price and not price levels, we believe that using 
state level prices for electricity and other fuels is appropriate. 
25 Although more than 99 percent of building air cooling is powered by electricity, the role of electricity in space 
heating is much smaller (between 2 percent and 18 percent)  and varies substantially across regions of the country. 
To better represent the limited role of electricity in delivering space heating, we weight our heating degree day 
variable by the share of electricity in space heating for residential and commercial buildings. The shares are from the 
Residential Energy Consumption survey and Commercial Building Energy Consumption survey for available years, 
and are interpolated for intervening years. We found this adjustment to be important empirically. 
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GDP, and heating and cooling degree days), we use the value associated with the state in which 
the utility does the majority of its business. 

6. Estimation and Results 

Estimation employed a nonlinear least squares estimator using Newton’s method (as 
implemented in Stata).  We also use robust errors, clustered by utility, in order to account for 
heteroskedasticity. Estimation results for equation (4) appear in Table 2, where the dependent 
variable is the first difference in log electricity demand (approximately equal to the rate of 
change). The table includes two different specifications and two different samples, for a total of 
four models. The primary focus of our analysis is on the relationship between electricity demand 
growth and contemporaneous and lagged rate payer–funded energy efficiency DSM spending.26 
We considered a variety of lag structures and chose to include contemporaneous and six prior 
year lags for average DSM expenditures per customer, based on the Schwarz–Bayes and Akaike 
information criteria. Including additional lags also led to no increase in the total percentage 
savings attributable to current and past DSM spending.  

6.1 Coefficient Estimates 

In all of the models, we find a significant negative relationship between annual growth in 
electricity demand and the collection of variables representing average DSM spending per 
customer in current and past years.27 The magnitude of the γ coefficient, which gives the rate at 
which diminishing returns set in, is always highly significant and slightly larger in absolute value 
with the smaller sample 2.  

The results reveal that the relationship between electricity demand growth and indicators 
of growth in the size of the market (number of customers and population) and overall economic 
growth (gross state product) is generally positive and significant across the different models. The 
additional effect of growth in per capita housing starts is significant and positive in models 1 and 
2, but not significant in models 3 or 4. The coefficient on population growth is positive and 

                                                 
26 As noted in section 4 above, we use DSM spending per customer (as opposed to simply the level of DSM) to 
ensure that the effect on kWh saved of an additional dollar of DSM spending will not be larger for larger utilities; 
this would be conceptually incorrect.   
27 An F-test on the group of DSM (β) coefficients is significant at the 5 percent level for models 3 and 4, and at the 1 
percent level for models 1 and 2. Although some of the individual coefficients on DSM are positive, none of the 
models has a significant positive value for a coefficent on DSM. 



Resources for the Future Arimura, Newell, and Palmer 
 

17 

significant in all 4 models. Electricity demand is also positively associated with increases in the 
climate variable (i.e., heating/cooling degree days) and the size of this effect is fairly consistent 
across the different models at an elasticity of about 0.1. Electricity demand is significantly 
negatively associated with the price of electricity (elasticity of –0.05 in model 1), as expected, as 
well as the price of natural gas (although the latter coefficient is quite small).28 The price of oil 
has a positive and significant coefficient in models 1 and 2, but is insignificant in the other 
models. 

In models 2 and 4 we also include the effect of decoupling regulation and building codes 
on electricity demand growth. Decoupling has a negative but statistically insignificant effect on 
demand growth in both models. We find no statistically significant effect of building codes on 
electricity demand growth in model 2, and in model 4 we actually find a counterintuitive positive 
and statistically significant effect. Although the model 2 finding is consistent with Jaffe and 
Stavins (1995), it is perhaps surprising and could suggest that these codes have not been 
particularly binding in the past. However, it seems more likely that our admittedly blunt measure 
of code stringency is insufficient to detect any effect.  

The results of models 3 and 4 and other models run with smaller samples not presented 
suggest that limiting the analysis to the smaller samples tends to decrease the number of 
significant variables. For example, housing starts are not significant in models 3 or 4 and the 
overall effect of DSM expenditures is less significant in models 3 and 4 than in models 1 and 2.29 
Given the insignificance of the decoupling and building code variables in model 2, this leads us 
to focus on model 1 as our preferred specification.  

6.2 Percentage Savings and Average Cost-Effectiveness 

We use the estimated coefficients from each model and equations (8) and (10) to solve 
for the weighted average percentage savings and average cost according to each model.  To 

                                                 
28 The electricity price coefficient interpretation as a demand elasticity suffers from the potential endogeneity of 
electricity price.  To assess the potential effects of simultaneity bias, we also estimated a two-stage model with an 
initial regression of electricity price on all of the economic variables included in our demand regression and input 
prices of natural gas and coal to electric utilities and year dummies.  We then substituted the predicted values of 
price from this regression into model 1. Using this two-stage model, we find that the coefficient on the predicted 
electricity price is larger in absolute value (–0.14 versus –0.04), but not statistically significant.  None of the other 
coefficients changes. 
29 The same is true for other models run with smaller samples that are not presented here. 



Resources for the Future Arimura, Newell, and Palmer 
 

18 

associate savings with energy efficiency expenditures in years 2000 and later, we require 
predictions of electricity sales for 2007 through 2012 and we assume that the level of electricity 
sales at each utility remains at 2006 levels through 2012.30  Table 3 reports predictions of the 
percentage electricity savings and the weighted average cost along with 95 percent confidence 
intervals for each of the four models.31 The mean predicted percentage electricity savings from 
DSM is 1.1–1.4 percent, and the mean predicted cost-effectiveness for models 1 to 4 is 5.5–6.4 
cents per kWh.   

Our predictions of percentage savings and average cost stand somewhat in contrast to 
those reported by the utilities in response to EIA Form 861. On that form, utilities report 
incremental energy savings associated with current efficiency programs and total annual energy 
savings (from current and past DSM expenditures) as well as annual expenditures on energy 
efficiency DSM. For purposes of comparison to the average predictions from our model, we use 
these self-reported total annual savings to calculate an aggregate savings across all of the 
observations from the EIA data set that are included in our percentage savings and average cost 
calculations. This aggregate savings number represents the sum across all utilities and all years. 
We calculate utility-reported average percentage savings by dividing this aggregate savings 
value by aggregate MWh sold for the same set of utility-level annual observations. We similarly 
aggregate the reported DSM energy efficiency spending for these observations and calculate a 
weighted average reported cost by taking the ratio of aggregate cost to total reported savings.32 
These calculations yield a weighted average electricity savings of 2.0 percent, or roughly 80 
percent higher than our estimate based on the econometric analysis. The utility reports imply that 

                                                 
30 Predicting flat levels of electricity sales beyond 2006 may be overly pessimistic. According to EIA, annual 
average electricity sales growth during 2000-2006 in our sample was 1.2 percent.  If we were to assume that 
electricity sales grew at 1.2 percent per year on after 2006, this would tend to adjust our estimate of total savings up 
by roughly 1.2 percent, and lead to a neglible reduction in cost of about 0.1 cents per kWh.   
31 We estimate standard errors (using the nonparametric bootstrap, as implemented in Stata) around predicted values 
of weighted average percentage savings and weighted average cost resulting from each model specification. 
32 Note that these calculated savings and related average cost measures do not include the effects of third-party 
programs.  We are unable to evaluate the cost effectiveness of percentage savings from third-party programs because 
we were not able to obtain the necessary data.  Note also that we may be under counting the cost of annual savings 
reported in early years by the utilities and under counting the savings of expenditures in later years, because we only 
have reported savings measures through 2006.   The net effect of these two omissions on the implied weighted 
average cost estimate is difficult to know, but if savings were high during the high expenditure years of the early 
1990s relative to what they might be for the lower aggregate expenditures in the early 2000’s then our estimate of 
average cost according to the utility reports is probably biased upwards. 
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these savings are achieved at an average cost of 2.9 cents per kWh (2007$), which is outside the 
confidence interval for model 1 but inside the confidence intervals for models 3 and 4.  

The expected average cost estimate of 6.4 cents per kWh for utility costs is less than the 
national average retail price of electricity in 2006 of 9.1 cents per kWh across all sectors (EIA 
2009). Recall that these are costs only for the utility itself. This difference suggests that these 
programs may have produced zero-cost or low-cost CO2 emissions reductions, depending on the 
magnitude of the costs to utility customers of implementing energy efficiency measures. 
Although the marginal cost of electricity—which is not generally equal to the electricity price—
is perhaps a better estimate of the benefits of energy savings from DSM, estimates of marginal 
cost can vary substantially depending on what margin is being considered. In the short run, the 
marginal cost of generation can vary substantially by time of day. For example, in December 
2006, the hourly marginal cost of generation ranged from roughly 2 cents per kWh to 27 cents 
per kWh depending on location and time of day (PJM 2006). In the longer run, marginal 
generation costs are given by the levelized cost of new investments, which vary by technology 
and fuel and, according to the National Academy of Sciences (2009), range from roughly 8–9 
cents per kWh for new base load fossil capacity to a little over 13 cents per kWh for a new gas 
turbine peaker.  

Accounting for customer costs is also challenging. Earlier research (Nadel and Geller 
1996; Joskow and Marron 1992) suggests that the sum of customer costs and utility costs is 
roughly 1.7 times utility costs alone. Because this ratio is based on such a small number of 
somewhat dated studies, we do not think it is appropriate to use this ratio to estimate customer 
costs for our results. Nonetheless, it suggests that the total average cost of a kWh saved may 
exceed the retail electricity price, which could raise our estimates of the implied cost of any 
associated CO2 emissions reductions into positive territory. However, targeting incremental 
energy efficiency investments at certain utilities, and in turn certain households, could result in 
lower-cost energy savings and potentially zero-cost CO2 emissions reductions, as explored in 
section 6.4 below.  

6.3 Percentage Savings and Cost-Effectiveness Functions 

To develop a picture of the effectiveness of DSM spending at a hypothetical utility and of 
the relationship between DSM spending and the average cost of energy savings, we use our 
estimated parameter values and equations (6) and (11) to construct Figures 3, 4, and 5 for a 
representative utility with a 2006 average level of electricity sales per customer (25 MWh). 
Figure 3 shows that percentage savings is an increasing but concave function of average DSM 
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expenditures per customer on average. Note that spending per customer here is total spending 
averaged over all customers. The level of spending per customer for DSM program participants 
will be many times higher than the average over all utility customers. Harvesting additional 
savings tends to become increasingly challenging as the low-cost opportunities are used up. 
Thus, increased DSM spending has diminishing returns, which can occur due to both increasing 
the level of spending per participating customer, as well as increasing the number of customers 
participating in programs. Figure 4 illustrates how the average cost of electricity savings 
increases with the average level of expenditure per customer in a roughly linear fashion.33   Both 
figures (4) and (5) include 95 percent confidence intervals calculated using the delta method with 
the estimated parameters and variance-covariance matrices for equations (6) and (11). 

Figure 5 combines Figures 3 and 4 to provide an average cost curve for different 
percentages of electricity savings. The average cost curve is convex, indicating that costs rise at 
an increasing rate as average expenditures per customer increase. Note that this figure suggests 
that, for a utility with 25 MWh per customer in annual sales, a 1.1 percent savings in electricity 
can be achieved at an expected average cost of roughly 3 cents per kWh, a much lower average 
cost than the sample-weighted expected average cost estimate of 6.4 cents per kWh. This 
difference is attributable to the fact that much of historic DSM spending occurred at utilities with 
a lower-than-average level of sales per customer and thus a higher cost of achieving reductions 
than a utility with the average level of sales per customer. Average costs rise with the percentage 
savings and the function suggests that, to achieve 1.5 percent savings, the utility would have to 
spend an average of $18 per customer, yielding a central estimate of average cost to the 
representative utility of roughly 4.5 cents per kWh saved. 

6.4 Policy Scenario  

The estimated relationships between increased average DSM spending per customer and 
percentage savings (Eq. 6) and between average DSM spending per customer and average cost of 

                                                 
33 A recent study by Synapse Energy Economics (Takahashi and Nichols 2008) of a number of different programs  
uses simple linear regressions of average cost-effectiveness on percentage of incremental electricity savings in the 
initial year, finding that average costs are flat or slightly decreasing in the level of incremental savings at the utility 
or program administrator level.  They also study the relationship between avearge cost-effectiveness and lifetime 
energy savings and find similar negative coefficients.  In both cases, these linear regressions are typically estimated 
with a small number of data points, the equations do not control for any other factors that might affect energy 
savings or costs over time, and they assume utility reports of savings are accurate. For these reasons, that study does 
not provide reliable information on economies of scale. 
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energy savings (Eq. 11) can be used to explore the implications of counterfactual energy 
efficiency investment scenarios. For example, the data suggest that the utilities that invested in 
energy efficiency in 2006 had a lower level of average consumption per customer (23.9 MWh 
per customer) than those that did not (30.3 MWh per customer) and that the consumption per 
customer was even smaller for those that invested at higher than average levels (21.8 MWh per 
customer for utilities that invested at least $10 per customer, on average, in DSM in 2006). Our 
model suggests that those utilities with high levels of DSM spending may be facing diminishing 
returns and thus, ceteris paribus, face high incremental costs of achieving additional energy 
savings through investments in energy efficiency programs. Equation (11) shows that the 
average cost of achieving reductions at a utility is inversely related to the level of electricity 
consumption per customer. This relationship suggests that opportunities for lower-cost electricity 
savings are available from investing more in energy efficiency DSM at utilities that either 
currently do not invest in DSM or currently invest at lower levels. 

We use the estimated parameters for model 1 to simulate the effects of two counterfactual 
policies in 2006 in addition to a baseline scenario. In the baseline scenario, we solve equations 
(6) and (11) using the average level of DSM expenditures per customer reported in the data in 
2006 (including the DSM expenditures by third parties that have been allocated to the utility) to 
find the predicted levels of current and future energy savings for the 410 utilities that are 
included in our largest, model 1, sample.34 In the first policy scenario, we increase the average 
level of DSM spending per customer at all utilities that spent less than $5 per customer to $5 per 
customer and leave the other, higher-spending, utilities at their reported levels. In the second 
scenario, we increase the average level of DSM spending per customer at all utilities that spent 
less than $10 per customer in 2006 up to that level and leave the other spending the same.   

The results are displayed in Table 4. The first policy scenario suggests that spending an 
additional $185 million on energy efficiency DSM in 2006 at the 244 utilities that spent less than 
$5 per customer, on average, in 2006 would have resulted in 8.3 billion kWh of additional 
electricity savings at an incremental cost of 2.2 cents per kWh. Under the second scenario, 
spending an additional $440 million on DSM at the 270 utilities that spent less than $10 per 
customer, on average, in 2006 would have produced an additional 14 billion kWh of additional 

                                                 
34 In these simulations, we assume that the future demand for each utility stays at 2006 levels into the future.  On 
balance, this probably provides a conservative estimate of future electricity savings attributable to DSM 
expenditures today and thus may bias estimates upwards. 
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electricity savings at an expected incremental cost of 3.1 cents per additional kWh saved relative 
to the baseline.35 These scenarios suggest that potential opportunities for cost-effective 
incremental electricity savings are probably available at those utilities that are not currently 
making substantial investments in energy efficiency. Thus, the most efficient allocation of 
demand reductions would not seem to be one that imposes the same reduction requirements on 
all utilities. 

Furthermore, under both scenarios, the expected incremental cost per kWh saved is less 
than half the retail price of electricity in almost all of the lower 48 states in 2006 and generally 
lower than wholesale electricity prices as well.36 This difference suggests that, even if costs to 
consumers of DSM programs are equal to utility costs, the targeting of incremental DSM 
expenditures at certain types of utilities could result in zero-cost reductions in CO2 emissions, 
although assessing the magnitude of these potential reductions is beyond the scope of this paper. 

The results of this historical simulation exercise should be interpreted with care. The 
demand function parameters that we estimate are based on the collection of energy efficiency 
programs that were in existence over the 18-year sample period from 1989 through 2006. Thus, 
changes in the composition of measures included in energy efficiency programs, such as the 
recent increase in savings attributable to compact fluorescent light bulbs, are not reflected in the 
simulation analysis. Moreover, the data set that we use for the estimation incorporates all DSM 
spending included in the EIA-861 database plus incremental state-level spending, and no attempt 
is made to distinguish highly cost-effective programs from those that performed less well on 
cost-effectiveness grounds. Thus, the model is limited in its ability to provide predictions about 
the performance of any particular DSM program or insights into how a “state-of-the-art” energy 
efficiency DSM program is likely to perform. However, it does provide insight into how 
programs performed on average over this time period and what types of opportunities might exist 
if future programs were to perform similarly (no better and no worse), on average.  

                                                 
35 A large portion of the energy savings from existing programs over this time period have come from programs that 
invest in energy efficient lighting.  To the extent that recently legislated lighting efficiency standards will lower the 
energy consumption associated with lighting in the future, this could lower the potential savings from future DSM 
lighting programs and raise their costs.  Alternatively, there may be future improvements in utility’s and other 
program administrator’s ability to deliver savings that are not captured here and could contribute to lowering 
incremental costs of future energy savings relative to what is reported here. 
36 According to EIA, however, the incremental cost of the energy savings under policy scenario 2 is more than 50 
percent of the average retail price of electricity in Idaho, Kentucky, West Virginia, and Wyoming in 2006. 
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7. Conclusions 

The cost-effectiveness of utility DSM programs is a subject of considerable interest and 
study. Most of the past efforts to study cost-effectiveness generally take utility reports of 
electricity savings attributable to DSM programs as given, often adjusting by a preestablished 
net-to-gross factor to account for free riders net of spillover effects. In this analysis, we take a 
different approach that relies on econometric techniques to estimate how DSM expenditures 
affect actual growth in electricity demand, controlling for other demand drivers, such as changes 
in price and income. We build on earlier work by expanding the data set, including additional 
important explanatory variables, and developing a carefully motivated flexible functional form to 
describe the accumulation of past and current DSM expenditures per customer into a DSM 
capital variable. By focusing on average DSM per customer, we control for the scale of a utility’s 
operation in a way that we believe is an improvement on the specification used in L&K. We also 
find that the sensitivity of L&K results to the estimation sample was probably due to limitations 
in functional form, rather than the sample per se. 

 Our main model results suggest that, over the 18-year period covered by this analysis, 
rate payer–funded DSM expenditures produced a central estimate of 1.1 percent savings in 
electricity consumption at an average cost to utilities of roughly 6.4 cents per kWh saved. Using 
a nonparametric bootstrapping approach, we find that the 95 percent confidence interval for 
savings ranges from 0.6 percent to 1.4 percent, whereas the confidence interval for average cost 
spans values from 4.4 to 10.9 cents per kWh.  

We also used our econometric results to parameterize functional relationships between 
(a) the percentage savings and the average level of DSM expenditure per customer and between 
(b) the average cost of savings and both the average level of DSM expenditure per customer and 
the amount of electricity consumed per customer. These functions suggest that percentage 
savings is an increasing but concave function of the average level of DSM spending per 
customer and that average cost varies linearly with expenditures. Putting these two functions 
together allows us to trace out an average cost curve for percentage reductions in electricity 
consumption that is increasing and convex. We can also use these functions to simulate the 
effects of policies that increase energy efficiency spending by utilities that had no or low levels 
of spending in the past. We find that increasing energy efficiency DSM program spending at the 
270 utilities in our sample in 2006 that had expenditures of less than $10 per customer, on 
average, by a total of $440 million could result in a central estimate of 14 billion kWh in 
incremental electricity savings at an expected incremental cost of about 3.1 cents per kWh.  
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Utility energy efficiency programs are taking center stage in ongoing discussions about 
U.S. energy policy and how best to combat climate change. Studies such as the recent McKinsey 
Study (Granade et al. 2009) on the potential for saving energy at low or negative cost are part of 
this debate. However, missing from studies like McKinsey’s are the specific policy measures that 
would be required to bring about the investments and behavioral changes necessary to realize 
these energy savings and estimates of the extent to which the costs of implementing these 
policies might differ from the engineering costs. The present study offers additional evidence 
about how effective past utility and third-party state-level programs have been in reducing 
electricity demand, and how much they have cost per unit of electricity saved. 
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Tables and Figures 

Table 1. Summary Statistics 

  Sample 1 Sample 2 

Number of observations 3,155 1,614 

Number of utilities 513 189 

Variable mean median 
std 
dev min max mean median 

std 
dev min Max 

D.LN.Electricity demand 0.027 0.025 0.045 –0.290 0.285 0.022 0.021 0.044 –0.289 0.285 
Electricity demand (billion kWh) 6.86 0.89 14.90 0.16 104.00 9.07 2.16 16.70 0.17 104.00 
Electricity demand per cust (MWh) 27.9 22.7 45.5 6.8 782.3 26.1 23.3 17.9 8.4 251.1 
DSM spending ($ millions) 3.50 0.03 14.16 0 230.20 6.53 0.58 19.16 0.00 230.20 

DSM spending per customer ($) 8.08 0.88 15.16 0 162.90 14.57 7.49 18.18 0.00 162.90 

Number of customers (thousands) 277 41 626 1 4,782 394 93 774 1 4,782 
Population (thousands) 8,827 5,991 7,926 480 36,200 10,000 5,991 9,353 583 36,200 
State GDP ($ billions) 361 253 347 18 1788 422 253 411 18 1788 

Housing starts per capita 0.008 0.005 0.012 0.000 0.095 0.009 0.005 0.015 0.000 0.095 

Electricity price (cents per kWh) 8.44 7.72 2.34 4.76 15.87 9.12 8.03 2.73 4.76 15.87 
Natural gas price (cents per Mcf) 10.65 10.38 2.99 5.35 22.12 11.05 10.79 3.12 5.35 22.12 

Fuel oil price (cents per gallon) 136.46 124.19 41.55 73.40 275.31 144.65 133.73 43.72 73.40 275.31 

Climate 1,634 1,424 817 369 3,937 1,490 1,154 880 369 3,937 
Indicator for decoupling 0.042 0 0.202 0 1 0.066 0 0.249 0 1 
Indicator: most stringent bldg codes 0.033 0 0.178 0 1 0.055 0 0.228 0 1 
Indicator: more stringent bldg codes 0.796 1 0.403 0 1 0.812 1 0.391 0 1 

Indicator: building codes 0.872 1 0.334 0 1 0.885 1 0.319 0 1 

Notes: Dollars are inflation-adjusted to 2007. LN denotes variable is logged. D denotes first-difference of variable. 
Mcf denotes thousand cubic feet.
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Table 2. Estimation Results  
  Model 1 Model 2 Model 3 Model 4 

Explanatory variables Coefficient Sample 1 Sample 1 Sample 2 Sample 2 
DSM expenditure and all lags γ –140*** –120*** –170** –170** 
  53.0827 48.3672 83.6770 78.5208 
1-exp(gamma*DSM expenditure) β0 0.0024 0.002 –0.0041 –0.0051 
  0.0046 0.0047 0.0049 0.0050 
1-exp(gamma*L1.DSM expenditure) β1 –0.0038 –0.0038 0.0076 0.0077 
  0.0067 0.0068 0.0058 0.0059 
1-exp(gamma*L2.DSM expenditure) β2 0.0023 0.0026 –0.0016 –0.0011 
  0.0053 0.0054 0.0061 0.0062 
1-exp(gamma*L3.DSM expenditure) β3 –0.0076 –0.0074 –0.0153** –0.0154** 
  0.0066 0.0068 0.0070 0.0070 
1-exp(gamma*L4.DSM expenditure) β4 0.0064 0.0064 0.0070 0.0072 
  0.0057 0.0059 0.0071 0.0072 
1-exp(gamma*L5.DSM expenditure) β5 –0.0088* –0.0091* –0.0058 –0.0066 
  0.0049 0.005 0.0060 0.0061 
1-exp(gamma*L6.DSM expenditure) β6 –0.0076* –0.0081* –0.0061 –0.0066 
  0.0042 0.0044 0.0049 0.0049 
F-statistic for joint DSM  8.018*** 8.074*** 3.450** 4.128** 
D.LN.Number of customers λ1 0.3238*** 0.3232*** 0.3739*** 0.3731*** 
  0.05 0.0501 0.0674 0.0669 
D.LN.Population λ2 0.4616*** 0.4329*** 0.4409*** 0.4443*** 
  0.0916 0.093 0.1592 0.1617 
D.LN.Gross state product λ3 0.1349*** 0.1317*** 0.2347*** 0.2329*** 
  0.0366 0.0369 0.0586 0.0592 
D.LN.Housing starts per capita λ4 0.0158* 0.0152* 0.0138 0.0103 
  0.0084 0.0084 0.0119 0.0123 
D.LN.Price of electricity α1 –0.0467** –0.0469** –0.0483* –0.0507* 
  0.0214 0.0213 0.0279 0.0280 
D.LN.Price of natural gas α2 –0.0144* –0.015* –0.0115 –0.0122 
  0.0079 0.0079 0.0117 0.0118 
D.LN.Price of fuel oil α3 0.0394** 0.0388** 0.0278 0.0287 
  0.017 0.017 0.0272 0.0263 
D.LN.Climate ρ 0.1056*** 0.1058*** 0.1023*** 0.1032*** 
  0.0077 0.0077 0.0094 0.0095 
Indicator for decoupling regulation ν  -0.0045  –0.0060 
   0.0034  0.0039 
Indicator: Most stringent bldg codes φ1  0.0056  0.0053 
   0.0038  0.0045 
Indicator: More stringent bldg codes φ2  0.0000  0.0057** 
   0.0023  0.0025 
Indicator: Building codes φ3  0.0034  0.0006 
   0.0026  0.0034 
F-statistic for joint building codes   1.444  3.208** 
Adjusted R2  0.45 0.45 0.40 0.40 
Number of observations  3,155 3,155 1,614 1,614 

Notes: The dependent variable is change in the log of electricity demand.  LN denotes variable is logged. L1 and L2 
denote 1-year and 2-year lags of variable. D denotes first-difference of variable. Standard errors below coefficient 
estimates. * indicates statistical significance at 10%, ** at 5%, and *** at 1% level. See text and Table A-2 for 
further detail on variable construction. 
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Table 3. Estimated Average Cost-Effectiveness and Percentage DSM Energy Savings 

 
 
 Model 1 Model 2 Model 3 Model 4 

Average cost-effectiveness 
(2007 cents per kWh) 6.4 6.4 5.9 5.5 
95% confidence interval (4.4–10.9) (4.5–10.9) (2.6–15.7) (2.5–13.7) 
     
% average DSM energy savings 1.1 1.1 1.3 1.4 
95% confidence interval (0.6–1.4) (0.6–1.3) (0.4–2.7) (0.5–2.8) 

Note: The confidence intervals reported here are based on approximately 1,000 replications of a nonparametric 
bootstrap. 

 

Table 4. Estimated Incremental Savings and Cost-effectiveness of Greater DSM Spending 
at Utilities with Low Spending in 2006 (2007$) 

 
 
 

Total DSM 
expenditures 

(million $) 
Total electricity 
savings (BkWh) 

Average Cost 
(cents per kWh) 

Incremental 
expenditures 

(million $) 

Incremental 
savings 
(BkWh) 

Incremental cost 
(cents per kWh 

Baseline 1,249 18.6 6.7 — — — 
Scenario 1  1,434 26.9 5.3 185 8.3 2.2 
Scenario 2 1,689 32.6 5.2 440 14.0 3.1 
Note: BkWh denotes billion kilowatt hours. Emdash — denotes not relevant. 
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Figure 1. Rate Payer–Funded Energy Efficiency Expenditures 
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Figure 2. Stringency of Building Codes in 2007 
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Figure 3. Percentage Electricity Savings as a Function of DSM Spending per Customer 
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Note: Real 2007$. Predictions based on eq. (6) using model 1 estimates. 
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Figure 4. Average Cost per kWh as a Function of DSM Spending per Customer 

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16 18 20

Co
st
 (c
en

ts
 p
er
 k
W
h 
sa
ve
d)

Spending per customer ($)

Mean

95% Confidence 
Interval

 

Note: Real 2007$. Based on eq. (11), using model 1 estimates for a utility with mean 2006 electricity sales per 
customer of 25 MWh.  
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Figure 5. Cost per kWh as a Function of Percentage Savings from DSM 
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Note: Real 2007$. Based on eq. (6) and (11), using model 1 estimates for a utility with mean 2006 electricity sales 
per customer of 25 MWh. 
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Appendix 

Table A-1. Variable Definitions and Data Sources 
 

Variable 
 

Definition
 

Data source
     
DSM expenditure  DSM spending per 1,000 customers  EIA‐861 
D.LN.Number of 
customers 

First difference of log of total number of customers 
served by utility  EIA‐861 

D_LN.Population 
First difference of log of population in state in which 
utility has most of its sales Census 

D_LN.Gross state 
product  First difference of log of gross state product

Bureau of Economic 
Analysis 

D_LN.Housing 
starts per capita  Log of annual housing starts per capita by state Mitsubishi Bank
D.LN.Price of 
electricity 

First difference of log of average annual state‐level price 
of electricity to final consumers in $ per kWh EIA 

D.LN.Prce of 
natural gas 

First difference of log of residential natural gas price by 
state in $ per trillion cubic feet EIA 

D.LN.Price of fuel 
oil 

First difference of log of price of fuel oil number two in $ 
per gallon  EIA 

D.LN.Climate 

First difference of log of the sum of population‐weighted 
heating degree days also weighted by electricity share of 
heating consumption in million BTUs and population‐
weighted cooling degree days NOAA and EIA

Indicator for 
decoupling 

Dummy variable set equal to one if utility operates in 
state that has decoupling

American Council for 
an Energy Efficient 
Economy, National 
Association of 
Regulatory Utility 
Commissions

Indicator: Most 
stringent bldg 
codes  State building code meets or exceeds 2006 IECC standard

Building Codes 
Assistance Project, DOE

Indicator: More 
stringent bldg 
codes 

State building code meets or exceeds 1998 IECC standard 
or more recent ones

Building Codes 
Assistance Project, DOE

Indicator: bldg 
codes 

State building codes are significantly adopted in most 
jurisdictions or they meet or exceed 1998 IECC standard 
or more recent ones

Building Codes 
Assistance Project, DOE
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Table A-2. Third-Party DSM Expenditures: State, Year, and Data Source  
(millions of 2007$) 

 

State 1998 1999 2000 2001 2002 2003 2004 2005 2006 Administrator 

Illinois 0.00 0.00 0.00 0.00 0.00 3.21 3.12 0.93 1.06 

Department of Commerce and 
Economic Opportunity (Energy 
Efficiency Trust Fund) 

Maine 0.00 0.00 0.00 0.00 0.00 2.80 5.11 8.26 9.33 Efficiency Maine 

Michigan 0.00 0.00 0.00 0.00 1.12 2.51 3.66 3.70 2.89 

Michigan Public Service 
Commission (The Low-Income and 
Energy Efficiency Fund) 

New 
Jersey 0.00 0.00 0.00 66.19 107.25 99.44 101.52 90.53 81.78 

New Jersey Board of Public Utilities 
(New Jersey Clean Energy 
Collaborative)  

New York 7.86 12.05 30.54 80.34 137.77 160.32 152.87 150.86 155.01 
New York State Energy Research 
and Development Authority 

Oregon 0.00 0.00 0.00 0.00 8.41 27.46 43.89 54.49 46.69 Energy Trust of Oregon 

Vermont 0.00 0.00 6.71 10.30 12.63 14.59 15.31 16.01 15.24 Efficiency Vermont 

Wisconsin 0.00 0.00 0.00 0.00 29.07 50.65 42.62 41.48 40.84 Focus on Energy 

Total 7.86 12.05 37.25 156.83 296.24 360.98 368.11 366.26 352.84  

 

 


