3,918 research outputs found

    Disorder Screening in Strongly Correlated Systems

    Full text link
    Electron-electron interactions generally reduce the low temperature resistivity due to the screening of the impurity potential by the electron gas. In the weak-coupling limit, the magnitude of this screening effect is determined by the thermodynamic compressibility which is proportional to the inverse screening length. We show that when strong correlations are present, although the compressibility is reduced, the screening effect is nevertheless strongly enhanced. This phenomenon is traced to the same non-perturbative Kondo-like processes that lead to strong mass enhancements, but which are absent in weak coupling approaches. We predict metallicity to be strongly stabilized in an intermediate regime where the interactions and the disorder are of comparable magnitude.Comment: 4+epsilon pages, 3 figure

    Plasmonic Scaling of Superconducting Metamaterials

    Get PDF
    Superconducting metamaterials are utilized to study the approach to the plasmonic limit simply by tuning temperature to modify the superfluid density, and thus the superfluid plasma frequency. We examine the persistence of artificial magnetism in a metamaterial made with superconductors in the plasmonic limit, and compare to the electromagnetic behavior of normal metals as a function of frequency as the plasma frequency is approached from below. Spiral-shaped Nb thin film meta-atoms of scaled dimensions are employed to explore the plasmonic behavior in these superconducting metamaterials, and the scaling condition allows extraction of the temperature dependent superfluid density, which is found to be in good agreement with expectations.Comment: 5 pages, 3 figure

    The two-phase approximation for black hole collisions: Is it robust?

    Get PDF
    Recently Abrahams and Cook devised a method of estimating the total radiated energy resulting from collisions of distant black holes by applying Newtonian evolution to the holes up to the point where a common apparent horizon forms around the two black holes and subsequently applying Schwarzschild perturbation techniques . Despite the crudeness of their method, their results for the case of head-on collisions were surprisingly accurate. Here we take advantage of the simple radiated energy formula devised in the close-slow approximation for black hole collisions to test how strongly the Abrahams-Cook result depends on the choice of moment when the method of evolution switches over from Newtonian to general relativistic evolution. We find that their result is robust, not depending strongly on this choice.Comment: 4 pages, 3 figures, submitted to Classical and Quantum Gravit

    Mathematical wind profiles

    Get PDF
    Augmented Fourier polynomials for mathematical representation of vertical profiles for horizontal wind velocitie

    Toward an anisotropic atom-atom model for the crystalline phases of the molecular S8 compound

    Full text link
    We analize two anisotropic atom-atom models used to describe the crystalline alpha,beta and gamma phases of S8 crystals, the most stable compound of elemental sulfur in solid phases, at ambient pressure and T<=400 K. The calculations are performed via a series of classical molecular dynamics (MD) simulations, with flexible molecular models and using a constant pressure-constant temperature algorithm for the numerical simulations. All intramolecular modes that mix with lattice modes, and are therefore relevant on the onset of structural phase transitions, are taken into account. Comparisons with experimental data and previous results obtained with an isotropic atom-atom molecular model are also performed.Comment: Major changes, new simulations and figures added, revtex4, to appear in J. Chem. Phy

    The collision of boosted black holes

    Get PDF
    We study the radiation from a collision of black holes with equal and opposite linear momenta. Results are presented from a full numerical relativity treatment and are compared with the results from a ``close-slow'' approximation. The agreement is remarkable, and suggests several insights about the generation of gravitational radiation in black hole collisions.Comment: 8 pages, RevTeX, 3 figures included with eps

    Cauchy-perturbative matching and outer boundary conditions I: Methods and tests

    Get PDF
    We present a new method of extracting gravitational radiation from three-dimensional numerical relativity codes and providing outer boundary conditions. Our approach matches the solution of a Cauchy evolution of Einstein's equations to a set of one-dimensional linear wave equations on a curved background. We illustrate the mathematical properties of our approach and discuss a numerical module we have constructed for this purpose. This module implements the perturbative matching approach in connection with a generic three-dimensional numerical relativity simulation. Tests of its accuracy and second-order convergence are presented with analytic linear wave data.Comment: 13 pages, 6 figures, RevTe

    Cauchy-perturbative matching and outer boundary conditions: computational studies

    Get PDF
    We present results from a new technique which allows extraction of gravitational radiation information from a generic three-dimensional numerical relativity code and provides stable outer boundary conditions. In our approach we match the solution of a Cauchy evolution of the nonlinear Einstein field equations to a set of one-dimensional linear equations obtained through perturbation techniques over a curved background. We discuss the validity of this approach in the case of linear and mildly nonlinear gravitational waves and show how a numerical module developed for this purpose is able to provide an accurate and numerically convergent description of the gravitational wave propagation and a stable numerical evolution.Comment: 20 pages, RevTe
    corecore